In this thesis work, I investigated the production of polyynes by Pulsed Laser Ablation in Liquid (PLAL) through a novel recirculation method. I designed a recirculation system that allows to ablate a solid graphite target immersed in a solvent in flow conditions within an ablation cell. This flow is generated by a peristaltic membrane pump. The ablations were performed using an Nd:YAG ns-pulsed laser at the fundamental wavelength of 1064 nm. The laser ablated the graphite target for 90 minutes in the presence of 100 ml of solvent. I explored the effects of two organic solvents: methanol (MeOH) and acetonitrile (ACN). Among these, ACN was chosen for the experiments due to its higher production of polyynes (i.e., the concentration of HC8H in ACN was twice the one in MeOH). Ablations were performed in a cell configuration where the cell volume was entirely filled by the solvent. The impact of fluence and spot radius on the final concentration of polyynes was investigated. An increase in both spot size and fluence was shown to enhance polyynes production up to a threshold, where a trend inversion occurs. For instance, the concentration of HC8H was increased by 90% thanks to a radius increase of 24% at constant fluence. An ablation in batch (static) conditions using the same parameters of the recirculation system was performed to compare the two methods. Ablating in flow conditions, the concentration of short polyynes showed a slight increase (15% for HC8H), while longer polyynes experienced a decrease (50% for HC14H). The most promising result regards the rate of production, which decreased over time but with a lower gradient in the recirculation case. Indeed, in the last 15 minutes of ablation, the rate of production obtained in the recirculation system is more than 30% higher for HC8H and approximately an order of magnitude higher for HC14H compared to the static case. These results show promising future perspectives for the scalability of the technique.
In questa tesi, ho indagato la produzione di poliine attraverso l’Ablazione Laser Pulsata in Liquido (PLAL) utilizzando un innovativo metodo di ricircolo. Ho progettato un sistema di ricircolo che consente di ablare un target solido di grafite immerso in un solvente in condizioni di flusso all’interno di una cella di ablazione. Questo flusso è generato da una pompa peristaltica a membrana. Le ablazioni sono state eseguite utilizzando un laser Nd:YAG ns-pulsato alla lunghezza d’onda fondamentale di 1064 nm. In ogni ablazione il target viene ablato per 90 minuti in presenza di 100 ml di solvente. Ho esplorato gli effetti di due solventi organici: metanolo (MeOH) e acetonitrile (ACN). Tra questi, l’ACN è stato scelto per gli esperimenti a causa della sua maggiore produzione di poliine, infatti la concentrazione di HC8H in ACN è risultata circa doppia rispetto a quella in MeOH. Le ablazioni sono state eseguite con una configurazione della cella in cui il volume della cella era completamente riempito dal solvente. In tale configurazione ho investigato l’impatto della fluenza e del raggio dello spot sulla concentrazione finale di poliine. Un aumento sia delle dimensioni dello spot che della fluenza ha dimostrato di migliorare la produzione di poliine fino a una certa soglia, oltre la quale si verifica un’inversione del trend. Ad esempio, la concentrazione di HC8H è aumentata del 90% grazie a un incremento del raggio del 24% a fluenza costante. Un’ ablazione in condizioni di produzione batch (statica) è stata eseguita con gli stessi parametri utilizzati in condizioni di ricircolo per confrontare i due metodi. Ablando in condizioni di flusso, la concentrazione di poliine corte ha mostrato un lieve aumento (15% per HC8H), mentre le poliine più lunghe hanno subito una diminuzione (50% per HC14H). Il risultato più promettente riguarda il tasso di produzione, che diminuisce nel tempo ma con un gradiente più basso nel caso di ricircolo. Infatti, negli ultimi 15 minuti di ablazione, il tasso di produzione ottenuto nel sistema di ricircolo è superiore del 30% per HC8H e approssimativamente di un ordine di grandezza superiore per HC14H rispetto al caso statico. Questi risultati suggeriscono prospettive future promettenti per uno scale-up della tecnica.
Optimization of polyynes production by Pulsed Laser Ablation in Liquid through a recirculation system
BERTOCCO, FEDERICO
2022/2023
Abstract
In this thesis work, I investigated the production of polyynes by Pulsed Laser Ablation in Liquid (PLAL) through a novel recirculation method. I designed a recirculation system that allows to ablate a solid graphite target immersed in a solvent in flow conditions within an ablation cell. This flow is generated by a peristaltic membrane pump. The ablations were performed using an Nd:YAG ns-pulsed laser at the fundamental wavelength of 1064 nm. The laser ablated the graphite target for 90 minutes in the presence of 100 ml of solvent. I explored the effects of two organic solvents: methanol (MeOH) and acetonitrile (ACN). Among these, ACN was chosen for the experiments due to its higher production of polyynes (i.e., the concentration of HC8H in ACN was twice the one in MeOH). Ablations were performed in a cell configuration where the cell volume was entirely filled by the solvent. The impact of fluence and spot radius on the final concentration of polyynes was investigated. An increase in both spot size and fluence was shown to enhance polyynes production up to a threshold, where a trend inversion occurs. For instance, the concentration of HC8H was increased by 90% thanks to a radius increase of 24% at constant fluence. An ablation in batch (static) conditions using the same parameters of the recirculation system was performed to compare the two methods. Ablating in flow conditions, the concentration of short polyynes showed a slight increase (15% for HC8H), while longer polyynes experienced a decrease (50% for HC14H). The most promising result regards the rate of production, which decreased over time but with a lower gradient in the recirculation case. Indeed, in the last 15 minutes of ablation, the rate of production obtained in the recirculation system is more than 30% higher for HC8H and approximately an order of magnitude higher for HC14H compared to the static case. These results show promising future perspectives for the scalability of the technique.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Bertocco_Executive_Summary_final.pdf
accessibile in internet per tutti
Dimensione
867.53 kB
Formato
Adobe PDF
|
867.53 kB | Adobe PDF | Visualizza/Apri |
2024_04_Bertocco.pdf
accessibile in internet per tutti
Dimensione
2.85 MB
Formato
Adobe PDF
|
2.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219723