Studies conducted on fiber-reinforced cementitious matrix (FRCM) composite materi- als are gaining large popularity, since FRCM can be successfully employed as externally bonded (EB) structural reinforcements for new or existing reinforced concrete (RC) struc- tures. Thanks to their inorganic matrix, they allow to overcome some of the drawbacks associated with fiber-reinforced polymer (FRP) composites, which are commonly used in this field. The complete understanding and ability to predict and standardize the be- havior and failure modes of FRCMs are still open issues, and pose a limit to their use as actual strengthening solutions outside of controlled laboratory testing. In the past, several analytical models to describe the shear response of these systems have been pro- posed, and many experimental campaigns conducted on FRCM structural reinforcements are available in the literature. This work starts with an introduction on FRP and FRCM systems and an explanation of the importance of the shear-strengthening of RC beams. Then, it collects the data coming from a series of experimental campaigns selected from those available in the literature in order to apply them to the design equations found in the European Eurocode 2 and Italian CNR-DT 215/2018 standards. Finally, one of the beams tested in the literature is modelled numerically using the Finite Element Method (FEM) in the Abaqus FEA software suite. The whole procedure used to model the FRCM shear strengthened beam is thoroughly described. This work gives insight on the issues that arise from numerical modelling of FRCM strengthened reinforced concrete (RC) structures. The aim of this work is to obtain a reliable FE model that will allow to better understand the shear strengthening behavior of FRCM systems. The description of the model can be used as a starting point for future numerical analyses conducted on U-wrapped FRCM-strengthened RC beams.
Gli studi condotti su materiali compositi fibrorinforzati a matrice cementizia (FRCM) stanno diventando sempre più diffusi, poiché possono essere impiegati con successo come rinforzi strutturali per strutture in calcestruzzo armato, nuove o pre-esistenti, consen- tendo di superare gli svantaggi che accompagnano i compositi fibrorinforzati a matrice polimerica (FRP) comunemente utilizzati nello stesso campo. La comprensione completa e la capacità di prevedere e standardizzare il comportamento e le modalità di rottura di questi materiali sono ancora questioni aperte e rappresentano un limite al loro re- golare impiego al di fuori dei test condotti in laboratorio. Diversi modelli analitici per descrivere la risposta di questi sistemi sono stati proposti in passato, e oggigiorno si trovano svariate campagne sperimentali in letteratura, condotte su rinforzi strutturali re- alizzati con compositi FRCM. A seguito di un’introduzione riguardante i compositi FRP e FRCM e una spiegazione dell’importanza che hanno soprattutto come rinforzi a taglio nelle travi in calcestruzzo armato, questo lavoro raccoglie i dati provenienti da una se- rie di campagne sperimentali selezionate da quelle presenti in letteratura per applicarli alle norme di progetto europee (Eurocodice 2) e italiane (CNR-DT 215/2018). Infine, una delle travi presenti nella letteratura viene modellata numericamente utilizzando il Metodo degli Elementi Finiti (FEM) all’interno del software Abaqus FEA, al fine di ottenere un modello affidabile che possa consentire di comprendere meglio il comportamento dei sis- temi FRCM. L’intera procedura utilizzata nella modellazione viene descritta in dettaglio negli ultimi capitoli. Questo lavoro fornisce spunti sui problemi che possono insorgere du- rante la modellazione numerica delle travi in calcestruzzo armato rinforzate con compositi FRCM. Il modello numerico sviluppato in questo lavoro può essere utilizzato come punto di partenza per future analisi numeriche condotte su questo tipo di strutture.
Numerical modeling of RC beams shear-strengthened with U-wrapped FRCM composites
GERVASINI, DARIO
2022/2023
Abstract
Studies conducted on fiber-reinforced cementitious matrix (FRCM) composite materi- als are gaining large popularity, since FRCM can be successfully employed as externally bonded (EB) structural reinforcements for new or existing reinforced concrete (RC) struc- tures. Thanks to their inorganic matrix, they allow to overcome some of the drawbacks associated with fiber-reinforced polymer (FRP) composites, which are commonly used in this field. The complete understanding and ability to predict and standardize the be- havior and failure modes of FRCMs are still open issues, and pose a limit to their use as actual strengthening solutions outside of controlled laboratory testing. In the past, several analytical models to describe the shear response of these systems have been pro- posed, and many experimental campaigns conducted on FRCM structural reinforcements are available in the literature. This work starts with an introduction on FRP and FRCM systems and an explanation of the importance of the shear-strengthening of RC beams. Then, it collects the data coming from a series of experimental campaigns selected from those available in the literature in order to apply them to the design equations found in the European Eurocode 2 and Italian CNR-DT 215/2018 standards. Finally, one of the beams tested in the literature is modelled numerically using the Finite Element Method (FEM) in the Abaqus FEA software suite. The whole procedure used to model the FRCM shear strengthened beam is thoroughly described. This work gives insight on the issues that arise from numerical modelling of FRCM strengthened reinforced concrete (RC) structures. The aim of this work is to obtain a reliable FE model that will allow to better understand the shear strengthening behavior of FRCM systems. The description of the model can be used as a starting point for future numerical analyses conducted on U-wrapped FRCM-strengthened RC beams.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Gervasini.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219730