This project focuses on developing a method for producing micrometer-sized permanent magnets, which may potentially find application in the production of low power microelectromechanical systems (MEMS) or energy harvesting devices. Considering the dimensional requirements of MEMS industrial manufacturing, various compatible production techniques were evaluated. The choice fell on inkjet printing technology complemented by electrodeposition for depositing metal alloys, aiming to obtain compact magnetic material with the desired shape while maintaining cost-effectiveness and high flexibility. However, electroplating encounters significant challenges, particularly with hard magnetic alloys, known for their difficulty in depositing sufficiently thick layers without crack formation, due to growing internal stresses with thickness. By applying an ultra-fast reverse pulse electroplating approach, these challenges were overcome, enabling the deposition of compact, crack-free CoNiP and CoPtP layers up to 20 µm thick. The morphology, phase composition and magnetic properties of the resulting materials were characterized. In a subsequent step, inkjet printing technology was employed to create a SU-8 lithographic mask with dimensional details suitable for fabricating micromagnets on a conductive substrate. CoNiP alloy was successfully deposited into the mold cavities, yielding a high number of cylindrical magnets with a diameter of approximately 35 µm and a height of up to 10 µm, featuring excellent surface finish.
Questo progetto si concentra sullo sviluppo di un metodo innovativo per la produzione di magneti permanenti dalle dimensioni micrometriche, potrebbero trovare potenziale impiego in sistemi microelettromeccanici (MEMS) a basso consumo o in dispositivi per il recupero energetico. Considerando le esigenze dimensionali della fabbricazione industriale dei MEMS, sono state valutate diverse tecniche di produzione compatibili. La scelta è ricaduta sulla tecnologia di stampa a getto d'inchiostro, affiancata dall’elettrodeposizione di leghe metalliche, con il fine di ottenere un materiale magnetico compatto e dalla forma desiderata, mantenendo costi contenuti e un’elevata flessibilità. L’elettrodeposizione incontra, tuttavia, sfide significative, poiché le leghe magnetiche dure sono note per essere difficili da depositare in strati sufficientemente spessi, dato che, con l’aumentare dello spessore, si verifica più facilmente la formazione di cricche causate dagli sforzi interni crescenti. Con l’utilizzo della tecnica di elettrodeposizione a impulsi inversi ultrarapidi, è stato possibile superare tali problemi, riuscendo a depositare leghe CoNiP e CoPtP in strati compatti e non criccati, con spessore fino a 20 µm. La morfologia, la composizione di fase e le proprietà magnetiche dei materiali ottenuti, sono state caratterizzate. In un passaggio successivo, la tecnologia di stampa a getto d'inchiostro è stata adoperata per la creazione di una maschera litografica su SU-8, con dettagli dimensionali adatti alla creazione di micromagneti su un substrato conduttivo. Infine, la lega CoNiP è stata depositata con successo nei fori dello stampo, ottenendo un elevato numero di magneti cilindrici, con un diametro di circa 35 µm e un'altezza fino a 10 µm, caratterizzati da un'eccellente finitura superficiale.
Inkjet assisted electroforming of thick hard magnetic layers for MEMS applications
Cesaro, Riccardo
2022/2023
Abstract
This project focuses on developing a method for producing micrometer-sized permanent magnets, which may potentially find application in the production of low power microelectromechanical systems (MEMS) or energy harvesting devices. Considering the dimensional requirements of MEMS industrial manufacturing, various compatible production techniques were evaluated. The choice fell on inkjet printing technology complemented by electrodeposition for depositing metal alloys, aiming to obtain compact magnetic material with the desired shape while maintaining cost-effectiveness and high flexibility. However, electroplating encounters significant challenges, particularly with hard magnetic alloys, known for their difficulty in depositing sufficiently thick layers without crack formation, due to growing internal stresses with thickness. By applying an ultra-fast reverse pulse electroplating approach, these challenges were overcome, enabling the deposition of compact, crack-free CoNiP and CoPtP layers up to 20 µm thick. The morphology, phase composition and magnetic properties of the resulting materials were characterized. In a subsequent step, inkjet printing technology was employed to create a SU-8 lithographic mask with dimensional details suitable for fabricating micromagnets on a conductive substrate. CoNiP alloy was successfully deposited into the mold cavities, yielding a high number of cylindrical magnets with a diameter of approximately 35 µm and a height of up to 10 µm, featuring excellent surface finish.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Cesaro_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
43.62 MB
Formato
Adobe PDF
|
43.62 MB | Adobe PDF | Visualizza/Apri |
2024_04_Cesaro_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
7.93 MB
Formato
Adobe PDF
|
7.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219734