The demand for sensors that are economically feasible, small in size, and autonomous has escalated with the proliferation of small technological devices and wearable technology. These new devices often operate in remote or inaccessible locations, where traditional power sources are impractical. Thus, the pursuit of energy-autonomous solutions becomes imperative, driving the need for efficient energy harvesting technologies. Additionally, the autonomous nature of these sensors aims to reduce the toxic waste generated by conventional batteries, contributing to environmental sustainability. Building upon previous experiments and research findings, this thesis endeavors to advance the field of energy harvesting by developing a prototype that combines the potential of graded metamaterials with magnetic plucking as a way to transform ambient energy into usable electric power employing piezoelectric transducers as the medium for energy transformation. Through the design and numerical testing of a prototype, the aim is to demonstrate its efficacy in converting low frequency vibrational energy into usable electrical power, offering a novel solution for sustainable and autonomous electronic systems. The results demonstrate that the final design of the prototype offers enhanced wave control facilitated by the rainbow effect and the creation of a bandgap, giving an estimation of the voltage generated by the device. This establishes its suitability for energy harvesting purposes and lays the groundwork for future advancements in the field of metamaterial-based energy conversion.
La domanda di sensori economicamente fattibili, di piccole dimensioni e autonomi è aumentata con la diffusione dei piccoli dispositivi tecnologici e della tecnologia indossabile. Questi nuovi dispositivi operano spesso in luoghi remoti o inaccessibili, dove le fonti di energia tradizionali non sono pratiche. Di conseguenza, la ricerca di soluzioni energetiche autonome diventa imperativa, spingendo la necessità di tecnologie efficienti di energy harvesting. Inoltre, la natura autonoma di questi sensori ha lo scopo di ridurre i rifiuti tossici generati dalle batterie convenzionali, contribuendo alla sostenibilità ambientale. Basandosi su esperimenti e risultati di ricerca precedenti, questa tesi propone un avanzamento nel campo dell’energy harvesting, sviluppando un prototipo che combina il potenziale dei metamateriali graduati con il “magnetic plucking” come modo per trasformare l'energia ambientale in energia elettrica utilizzando trasduttori piezoelettrici come mezzo per la trasformazione dell'energia. Attraverso il design e la realizzazione di test numerici su un prototipo, l'obiettivo è dimostrarne l'efficacia nella conversione dell'energia vibrante a bassa frequenza in energia elettrica utilizzabile, offrendo una soluzione innovativa per sistemi elettronici sostenibili e autonomi. I risultati dimostrano che il design finale del prototipo offre un controllo avanzato delle onde facilitato dal rainbow effect e dalla creazione di un bandgap, fornendo un'indicazione della tensione generata dal dispositivo. Ciò ne conferma l'adeguatezza per scopi di raccolta dell'energia e getta le basi per futuri progressi nel campo della conversione dell'energia basata su metamateriali.
Integration of graded metamaterials and magnetic plucking for enhanced energy harvesting
Palacios Sanchez, Alfredo
2022/2023
Abstract
The demand for sensors that are economically feasible, small in size, and autonomous has escalated with the proliferation of small technological devices and wearable technology. These new devices often operate in remote or inaccessible locations, where traditional power sources are impractical. Thus, the pursuit of energy-autonomous solutions becomes imperative, driving the need for efficient energy harvesting technologies. Additionally, the autonomous nature of these sensors aims to reduce the toxic waste generated by conventional batteries, contributing to environmental sustainability. Building upon previous experiments and research findings, this thesis endeavors to advance the field of energy harvesting by developing a prototype that combines the potential of graded metamaterials with magnetic plucking as a way to transform ambient energy into usable electric power employing piezoelectric transducers as the medium for energy transformation. Through the design and numerical testing of a prototype, the aim is to demonstrate its efficacy in converting low frequency vibrational energy into usable electrical power, offering a novel solution for sustainable and autonomous electronic systems. The results demonstrate that the final design of the prototype offers enhanced wave control facilitated by the rainbow effect and the creation of a bandgap, giving an estimation of the voltage generated by the device. This establishes its suitability for energy harvesting purposes and lays the groundwork for future advancements in the field of metamaterial-based energy conversion.File | Dimensione | Formato | |
---|---|---|---|
2024_04_PalaciosSanchez.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
7.67 MB
Formato
Adobe PDF
|
7.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219739