Robotic systems in the field of surgery have been introduced to improve the performance and outcomes of surgical procedures and reduce the physical and mental burden on the surgeon during the operation. In the field of spinal surgery, most robotic systems focus on a few procedures such as pedicle screw insertion, while other more complex and lengthy operations are still carried out manually and with lower precision compared to automated ones. Spinal osteotomy and in particular Pedicle Subtraction Osteotomy (PSO) is one of the most delicate procedures as it presents many challenges mainly due to the anatomical structure of the vertebra and the presence of delicate tissues. The procedure is carried out to correct postural malformations and consists of cutting and removing a part of the vertebra along two osteotomy planes and then closing it upon itself. Currently, this operation is all done manually, which entails physical and mental fatigue for the surgeon due to the length and delicacy of the procedure. Moreover, given the presence of delicate tissues such as the spinal cord, a high degree of precision is required. The aim of this work is to design a robotic system to assist the surgeon during PSO in following the pre-planned cutting planes while constraining their movement to preserve the delicate surrounding structures, such as the spinal cord, and the volume of bone tissue that does not need to be removed. For this purpose, an impedance control system based on Virtual Fixtures (VF) has been developed. This control modulates attractive or repulsive forces to align with the cutting plane or avoid sensitive areas, respectively. Furthermore, the system setup includes a preplanning phase to determine the desired angle of correction and an online navigation system to ensure continuous visualization of the drilled areas during the procedure. The control system was validated and a user study was executed to test whether the introduction of this Virtual Fixture - based control system allows users to achieve better performance in task execution when compared to the traditional manual approach. The proposed strategy was compared with a manual approach. The results indicate that the system successfully reduced the trajectory error, demonstrating the ability to be consistent with the planned trajectory. Moreover, a survey showed the user felt more confident executing the task with the proposed control.
I sistemi robotici nel campo della chirurgia sono stati introdotti per migliorare le prestazioni e i risultati delle procedure chirurgiche e ridurre il carico fisico e mentale sul chirurgo durante l’operazione. Nel campo della chirurgia spinale, la maggior parte dei sistemi robotici si concentra su alcune procedure come l’inserimento di viti peduncolari, mentre altre operazioni più complesse e lunghe vengono ancora eseguite manualmente e con una precisione inferiore rispetto a quelle automatizzate. L’osteotomia spinale e in particolare l’osteotomia sottrattiva del peduncolo (PSO) è una delle procedure più delicate in quanto presenta molte sfide principalmente a causa della struttura anatomica delle vertebre e della presenza di tessuti delicati. La procedura viene eseguita per correggere malformazioni posturali e consiste nel tagliare e rimuovere una parte della vertebra lungo due piani di osteotomia per poi chiudere la vertebra su se stessa. Attualmente, questa operazione viene eseguita manualmente, il che comporta affaticamento fisico e mentale per il chirurgo a causa della lunghezza e della delicatezza della procedura. Inoltre, data la presenza di tessuti delicati come il midollo spinale, è necessario un alto grado di precisione. L’obiettivo di questo lavoro è progettare un sistema robotico per assistere il chirurgo durante la PSO nel seguire i piani di taglio pre-pianificati limitando il loro movimento per preservare le delicate strutture circostanti, come il midollo spinale, e il volume di tessuto osseo che non necessita di essere rimosso. A tal fine, è stato sviluppato un sistema di controllo ad impedenza basato su Virtual Fixtures (VF). Questo controllo modula forze attrattive o repulsive per allinearsi al piano di taglio o evitare aree sensibili, rispettivamente. Inoltre, l’allestimento del sistema include una fase di pre-pianificazione per determinare l’angolo di correzione desiderato e un sistema di navigazione online per garantire una visualizzazione continua delle aree di operazione durante la procedura. Il sistema di controllo è stato con validato ed è stato eseguito uno studio sull’utente per testare se l’introduzione di questo sistema di controllo basato su Fixture Virtuali consenta agli utenti di ottenere migliori prestazioni nell’esecuzione del compito rispetto all’approccio manuale tradizionale. La strategia proposta è stata confrontata con un approccio manuale. I risultati indicano che il sistema ha ridotto con successo l’errore di traiettoria, dimostrando la capacità di essere coerente con la traiettoria pianificata. Inoltre, un sondaggio ha mostrato che l’utente si sentiva più sicuro nell’eseguire il compito con il controllo proposto.
Human-robot shared control for osteotomy procedure
Casadio, Lorenzo
2022/2023
Abstract
Robotic systems in the field of surgery have been introduced to improve the performance and outcomes of surgical procedures and reduce the physical and mental burden on the surgeon during the operation. In the field of spinal surgery, most robotic systems focus on a few procedures such as pedicle screw insertion, while other more complex and lengthy operations are still carried out manually and with lower precision compared to automated ones. Spinal osteotomy and in particular Pedicle Subtraction Osteotomy (PSO) is one of the most delicate procedures as it presents many challenges mainly due to the anatomical structure of the vertebra and the presence of delicate tissues. The procedure is carried out to correct postural malformations and consists of cutting and removing a part of the vertebra along two osteotomy planes and then closing it upon itself. Currently, this operation is all done manually, which entails physical and mental fatigue for the surgeon due to the length and delicacy of the procedure. Moreover, given the presence of delicate tissues such as the spinal cord, a high degree of precision is required. The aim of this work is to design a robotic system to assist the surgeon during PSO in following the pre-planned cutting planes while constraining their movement to preserve the delicate surrounding structures, such as the spinal cord, and the volume of bone tissue that does not need to be removed. For this purpose, an impedance control system based on Virtual Fixtures (VF) has been developed. This control modulates attractive or repulsive forces to align with the cutting plane or avoid sensitive areas, respectively. Furthermore, the system setup includes a preplanning phase to determine the desired angle of correction and an online navigation system to ensure continuous visualization of the drilled areas during the procedure. The control system was validated and a user study was executed to test whether the introduction of this Virtual Fixture - based control system allows users to achieve better performance in task execution when compared to the traditional manual approach. The proposed strategy was compared with a manual approach. The results indicate that the system successfully reduced the trajectory error, demonstrating the ability to be consistent with the planned trajectory. Moreover, a survey showed the user felt more confident executing the task with the proposed control.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis.pdf
solo utenti autorizzati dal 20/03/2025
Dimensione
48.95 MB
Formato
Adobe PDF
|
48.95 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary.pdf
solo utenti autorizzati dal 20/03/2025
Dimensione
10.37 MB
Formato
Adobe PDF
|
10.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219746