Space debris are uncontrolled objects orbiting in space, therefore they are a major problem as one of the main risks is that they can give rise to collisions, creating further debris and causing the so-called “Kessler syndrome”. In order to prevent this from happening, Collision Avoidance Manoeuvres (CAMs) are performed, which deviate the satellite’s orbit to avoid impact. However, this is only possible if at least one of the two objects is manoeuvrable. The problem is when a collision would occur between two space wrecks, i.e. two unmanoeuvrable objects. For this reason, methods for Just in time Collision Avoidance Manoeuvres (JCAMs) missions are being studied, i.e. operations that aim to slightly deviate the orbit of one of the two debris that would collide if no intervention was made, thus avoiding the collision. One of the most promising methods seems to be the one consisting of creating a gas cloud in front of the debris, in this manner, by passing through it, the aerodynamic resistance acting on the debris is increased for a moment and its trajectory is deviated. The aim of this thesis is to perform a preliminary analysis of this technology, with the novelty that sensitivity analyses were carried out on the different parameters that affect the mission which were then extended to real cases. To achieve this, firstly, the rocket’s trajectory, the gas cloud, and the effects of the manoeuvre were modelled. Secondly, the influences of the uncertain parameters on the effects of the manoeuvre were analysed using a fictitious case. Finally, the outcome of this technology on real cases were shown. From the results obtained, it emerged that this technology is capable of avoiding a collision between two debris, nevertheless the time interval between the collision and when the manoeuvre must be performed varies depending on the characteristics of the debris. In addition, this thesis shows that the ∆V obtained from the manoeuvre increases, due to the variation in the density of the gas that the debris encounters. It rises both as the distance between the debris and the JCAM device decreases and also, as the opening of the gas cone decreases.
I detriti spaziali sono un grosso problema, perchè essi sono oggetti incontrollati che orbitano nello spazio. Uno dei rischi principali è che essi causino delle collisioni andando a creare ulteriori detriti e provocando la così detta "sindrome di Kessler". Per evitare che ciò avvenga si praticano le Collision Avoidance Manoeuvres (CAMs) ovvero che si devia l’orbita del satellite per evitare la collisione, ma ciò è possibile solo se almeno uno dei due oggetti è manovrabile. Il problema è quando la collisione può avvenire tra due relitti spaziali, ovvero due oggetti non manovrabili. Per questo motivo sono allo studio metodi per le missioni di Just in time Collisin Avoidance Manoeuvres (JCAMs), ovvero missioni che hanno come obbiettivo quello di deviare leggermente l’orbita di uno dei due detriti che si andranno a scontrare se non si intervenisse, così da evitare la collisione. Uno dei metodi più promettenti sembrerebbe quello che consiste nel creare una nuvola di gas davanti al detrito così che passandoci attraverso si aumenti per qualche istante la resistenza aerodinamica sul detrito e ne si devi la sua traiettoria. Lo studio di questa tecnologia è l’oggetto di questa tesi, con la novità che sono state eseguite analisi di sensitività sui diversi parametri che influenzano la missione le quali sono poi state allargate a casi reali. Per fare ciò si è modellata la traiettoria del razzo, la nuvola di gas e gli effetti della manovra. Dopo di che, usando un caso fittizio, sono state analizzate le influenze dei parametri di incertezza presenti sugli effetti della manovra. In fine si sono mostrati gli effetti di questa tecnologia su casi reali. Dai risultati ottenuti è emerso che questa tecnologia è in grado di evitare una collisione tra due detriti anche se l’intervallo di tempo tra la collisione e l’istante in cui deve essere eseguita la manovra varia a seconda delle caratteristiche del detrito. In oltre, si è visto come il ∆V ottenuto dalla manovra aumenti al diminuire della distanza tra il detrito ed il dispositivo che rilascia il gas ed anche al diminuire dell’apertura del cono di gas. Ciò è dovut alla variazione della densità del gas che il detrito incontra.
Preliminary analysis of a just in time collision avoidance manoeuvre mission based on the artificial atmosphere method
Nava, Andrea
2022/2023
Abstract
Space debris are uncontrolled objects orbiting in space, therefore they are a major problem as one of the main risks is that they can give rise to collisions, creating further debris and causing the so-called “Kessler syndrome”. In order to prevent this from happening, Collision Avoidance Manoeuvres (CAMs) are performed, which deviate the satellite’s orbit to avoid impact. However, this is only possible if at least one of the two objects is manoeuvrable. The problem is when a collision would occur between two space wrecks, i.e. two unmanoeuvrable objects. For this reason, methods for Just in time Collision Avoidance Manoeuvres (JCAMs) missions are being studied, i.e. operations that aim to slightly deviate the orbit of one of the two debris that would collide if no intervention was made, thus avoiding the collision. One of the most promising methods seems to be the one consisting of creating a gas cloud in front of the debris, in this manner, by passing through it, the aerodynamic resistance acting on the debris is increased for a moment and its trajectory is deviated. The aim of this thesis is to perform a preliminary analysis of this technology, with the novelty that sensitivity analyses were carried out on the different parameters that affect the mission which were then extended to real cases. To achieve this, firstly, the rocket’s trajectory, the gas cloud, and the effects of the manoeuvre were modelled. Secondly, the influences of the uncertain parameters on the effects of the manoeuvre were analysed using a fictitious case. Finally, the outcome of this technology on real cases were shown. From the results obtained, it emerged that this technology is capable of avoiding a collision between two debris, nevertheless the time interval between the collision and when the manoeuvre must be performed varies depending on the characteristics of the debris. In addition, this thesis shows that the ∆V obtained from the manoeuvre increases, due to the variation in the density of the gas that the debris encounters. It rises both as the distance between the debris and the JCAM device decreases and also, as the opening of the gas cone decreases.File | Dimensione | Formato | |
---|---|---|---|
2024_4_Nava_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
2024_4_Nava_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
583.27 kB
Formato
Adobe PDF
|
583.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219895