The analysis of particles, both natural and artificial, represents a significant topic in any industrial and scientific field. For instance, most production facilities involve the consumption and/or production of powders, where stringent control is crucial to ensure the quality of the end-products and to limit the ecological footprint of the industrial processes. Additionally, the study of atmospheric particulate matter and its effects on climate and meteorology is one of the most trending topics of the twenty-first century, along with the contaminants monitoring inside enclosed environments like clean rooms. Similarly, the growing interest in extraterrestrial exploration, coupled with the strong innovative drive inherently linked to this field, has made space science a fertile ground for particle analysis. Understanding the InterStellar Medium, studying asteroids, and planetology represent the most prominent examples of such applications. In general, a parameter of significant importance is the particle size, which is typically estimated indirectly through the measurement of other size-dependent quantities. Widely employed are the amplitude-dependent Single Optical Particle Counters, instruments that measure via a photodetector the intensity of light scattered by a particle illuminated by an incident radiation as a means to determine its size. The thesis work in question concerns the development of a numerical simulator based on Mie theory, aimed at emulating the current signal output from the photodetector under operational conditions. Furthermore, a Monte Carlo algorithm is included in the simulator to manage the various sources of uncertainty introduced by the variables involved, to estimate a global uncertainty budget. The MicroMED Martian dust analyzer was adopted as a test bench to verify the simulator functionality. The instrument is part of the European Space Agency’s ExoMars mission and employs a photodetector to measure in situ the size and distribution of the airborne dust particles at the lower troposphere of Mars. The demanding operational conditions on Mars, combined with the extraordinary thermomechanical stresses and the complexity of the instrument working principle, necessitate a comprehensive analysis of the potential sources of variability that could jeopardize the performance of MicroMED, as well as the reliability of the provided measurements. Therefore, the operational principle of the instrument was analytically modelled, elucidating the functional relationship of the photodetector and highlighting the parameters to monitor. These parameters were initially classified based on their respective nature, suggesting a particular emphasis on the behaviour of MicroMED structural components and subassemblies under the expected environmental and operational conditions. Multiple finite element simulations and computational fluid dynamics iterations, supported by several experimental tests, allowed the quantification of the identified parameters and the estimation of their respective uncertainties. The propagation of the individual contributions was carried out via a Monte Carlo simulation for specific particles selected within the instrument measurement range, thus evaluating an estimation of the overall uncertainty for the instrument. Finally, the radius measurement was obtained by examining the local trend of the functional relationship concerning the investigated particles. A sensitivity coefficient was assessed for each particle, explicitly delineating the uncertainty budget for the radius based on the previously estimated uncertainty for the photodetector. Simultaneously, the thermomechanical design of MicroMED was further explored using a hybrid approach involving finite element analysis and non-conventional design. Topology Optimization was effectively employed to ensure enhanced dynamic performance and a significant reduction in the mass of several key mechanical components of the instrument. Besides, the structural proposals were subsequently manufactured and tested, yielding satisfactory results and validating the design methodology employed.
L’analisi delle particelle, sia di origine naturale che artificiale, costituisce un tema di rilievo in ambito industriale e scientifico. Ad esempio, la quasi totalità degli impianti produttivi prevede l’utilizzo e/o la produzione di polveri il cui controllo rigoroso è fondamentale per garantire la qualità del prodotto finito e per limitare l’impronta ecologica dei processi industriali. Inoltre, lo studio del particolato atmosferico e del suo effetto su clima e meteorologia è uno degli argomenti di maggior tendenza del ventunesimo secolo, nonché il monitoraggio del pulviscolo in ambienti chiusi come le camere bianche. Analogamente, il crescente interesse nei riguardi dell’esplorazione extra-terrestre unito alla forte spinta innovativa legata indissolubilmente a tale settore, hanno reso la scienza spaziale un terreno fertile per l’analisi delle particelle. La comprensione del mezzo interstellare, lo studio degli asteroidi e la planetologia costituiscono gli esempi più lampanti di tale applicazione. In generale, un parametro di significativa importanza è la dimensione delle particelle, la quale viene tipicamente stimata indirettamente attraverso la misura di altre grandezze da essa dipendenti. Largamente impiegati sono i contatori ottici di particelle singole ampiezza-dipendenti, strumenti che misurano mediante un fotorilevatore l’intensità di luce diffusa da una particella illuminata da una radiazione incidente come mezzo per determinarne la dimensione. La tesi in oggetto riguarda lo sviluppo di un simulatore numerico basato sulla teoria di Mie e atto ad emulare il segnale di corrente in uscita dal fotorilevatore in condizioni operative. Inoltre, un algoritmo Monte Carlo è incluso nel simulatore per gestire le diverse fonti di incertezza introdotte con le variabili in gioco, al fine di stimare un budget di incertezza globale. L’analizzatore di polveri marziane MicroMED, è stato adottato come banco di prova per verificarne la funzionalità. Lo strumento, facente parte della missione ExoMars dell’Agenzia Spaziale Europea, adotta un fotorilevatore per misurare in situ la dimensione e la distribuzione delle polveri disperse nella bassa troposfera di Marte. Le estreme condizioni operative marziane, unite alle straordinarie sollecitazioni termomeccaniche e alla complessità nel principio di funzionamento dello strumento rendono necessaria una analisi a tutto tondo delle possibili sorgenti di variabilità che potrebbero inficiare sulle prestazioni di MicroMED, nonché sull’attendibilità delle misure fornite. Dunque, il principio operativo dello strumento è stato modellato analiticamente, esplicitando la relazione funzionale del fotorilevatore e mettendo in evidenza i parametri da monitorare. Tali parametri sono stati inizialmente classificati secondo la rispettiva natura, suggerendo particolare enfasi sul comportamento dei componenti strutturali e dei sottoassiemi di MicroMED nelle condizioni ambientali ed operative attese. Molteplici simulazioni ad elementi finiti e iterazioni di fluidodinamica computazionale, supportate da altrettante prove sperimentali, hanno permesso di quantificare i parametri identificati e di stimarne la corrispondente incertezza. La propagazione dei singoli contributi è stata eseguita tramite una analisi Monte Carlo per alcune particelle appartenenti al range di misura dello strumento, valutando così una stima dell’incertezza globale per il fotorilevatore di MicroMED. Infine, la misura di raggio è stata ottenuta esaminando l’andamento locale della relazione funzionale in corrispondenza delle particelle investigate. Un coefficiente di sensibilità è stato valutato per ciascuna di esse, esplicitando così il budget di incertezza per il raggio a partire da quello stimato in precedenza per il fotorilevatore. In parallelo, il design termomeccanico di MicroMED è stato approfondito adottando un approccio ibrido basato su analisi ad elementi finiti e progettazione non-convenzionale. L’ottimizzazione topologica è stata impiegata efficacemente per garantire un miglioramento delle prestazioni dinamiche e una significativa riduzione della massa di alcuni dei principali componenti meccanici dello strumento. Le proposte strutturali sono state infine realizzate e testate, ottenendo risultati soddisfacenti e validando il metodo progettuale utilizzato.
Metrological optimization of a space dust analyzer for Mars
Corti, Marco Giovanni
2023/2024
Abstract
The analysis of particles, both natural and artificial, represents a significant topic in any industrial and scientific field. For instance, most production facilities involve the consumption and/or production of powders, where stringent control is crucial to ensure the quality of the end-products and to limit the ecological footprint of the industrial processes. Additionally, the study of atmospheric particulate matter and its effects on climate and meteorology is one of the most trending topics of the twenty-first century, along with the contaminants monitoring inside enclosed environments like clean rooms. Similarly, the growing interest in extraterrestrial exploration, coupled with the strong innovative drive inherently linked to this field, has made space science a fertile ground for particle analysis. Understanding the InterStellar Medium, studying asteroids, and planetology represent the most prominent examples of such applications. In general, a parameter of significant importance is the particle size, which is typically estimated indirectly through the measurement of other size-dependent quantities. Widely employed are the amplitude-dependent Single Optical Particle Counters, instruments that measure via a photodetector the intensity of light scattered by a particle illuminated by an incident radiation as a means to determine its size. The thesis work in question concerns the development of a numerical simulator based on Mie theory, aimed at emulating the current signal output from the photodetector under operational conditions. Furthermore, a Monte Carlo algorithm is included in the simulator to manage the various sources of uncertainty introduced by the variables involved, to estimate a global uncertainty budget. The MicroMED Martian dust analyzer was adopted as a test bench to verify the simulator functionality. The instrument is part of the European Space Agency’s ExoMars mission and employs a photodetector to measure in situ the size and distribution of the airborne dust particles at the lower troposphere of Mars. The demanding operational conditions on Mars, combined with the extraordinary thermomechanical stresses and the complexity of the instrument working principle, necessitate a comprehensive analysis of the potential sources of variability that could jeopardize the performance of MicroMED, as well as the reliability of the provided measurements. Therefore, the operational principle of the instrument was analytically modelled, elucidating the functional relationship of the photodetector and highlighting the parameters to monitor. These parameters were initially classified based on their respective nature, suggesting a particular emphasis on the behaviour of MicroMED structural components and subassemblies under the expected environmental and operational conditions. Multiple finite element simulations and computational fluid dynamics iterations, supported by several experimental tests, allowed the quantification of the identified parameters and the estimation of their respective uncertainties. The propagation of the individual contributions was carried out via a Monte Carlo simulation for specific particles selected within the instrument measurement range, thus evaluating an estimation of the overall uncertainty for the instrument. Finally, the radius measurement was obtained by examining the local trend of the functional relationship concerning the investigated particles. A sensitivity coefficient was assessed for each particle, explicitly delineating the uncertainty budget for the radius based on the previously estimated uncertainty for the photodetector. Simultaneously, the thermomechanical design of MicroMED was further explored using a hybrid approach involving finite element analysis and non-conventional design. Topology Optimization was effectively employed to ensure enhanced dynamic performance and a significant reduction in the mass of several key mechanical components of the instrument. Besides, the structural proposals were subsequently manufactured and tested, yielding satisfactory results and validating the design methodology employed.File | Dimensione | Formato | |
---|---|---|---|
2024_03_Corti.pdf
non accessibile
Descrizione: Tesi di dottorato
Dimensione
20.97 MB
Formato
Adobe PDF
|
20.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220054