Quantum devices promise to represent one of the next generation technologies, based on the unusual phenomena specific of quantum physics applied in real-world devices. Through this technological advancement, it will be possible to detect record-low electric and magnetic fields to the limit of the neuronal activity between the synapsis or predict the behavior of complex systems as the weather forecast or even the evolution of the stock market. Many concepts have already been studied from a theoretical point of view and algorithms have been developed showing the unprecedented possibilities related to this innovative technology. However, the practical implementation of devices is anything but trivial, currently being one of the most flourishing and financed fields of research. In fact, applying the concepts of quantum physics in real-world devices means finding a way to implement some notions belonging to the microscopic world in the macroscopic environment we live in. Several are the approaches that are being developed to fulfill such a challenging requirement, most of them suitable for specific applications, without a standardized procedure or a universal platform for the development of such devices. In particular, the main fields of applications are given by quantum sensing, quantum information, quantum communication and quantum simulation. Independently from the specific application, the main requirement of a quantum device would be the development of a system that can exist in a coherent superposition of deterministic states for a long enough time to perform the required operations. Moreover, the building blocks performing the different specific operations have to be developed and integrated in fully functional quantum devices. Currently, there are multiple candidates viable as quantum systems ranging from atoms, photons and spins to more complex mesoscopic superconductive and nanomechanical structures. Among others, optically active spin defects in solid state materials, also called colour centres, offer the advantage of combining weakly interacting spins suitable for quantum memories to the strengths of photons for encoding and transmitting quantum information, just as a few examples. Such colour centres are defects localized in the perfect structure of a crystal, showing specific optically active energy levels that can be exploited for processing quantum information. Once made the choice of colour centres as quantum systems for the development of devices, the main dispute falls on the crystal to be considered and the processing technique for the actual implementation of an integrated device. The initial choice falls on diamond and its intrinsically present Nitrogen Vacancy (NV) centre being historically one of the best known and widely studied colour centres, which has already proven to be a valuable candidate for several applications. In fact, the NV centre in diamond, and in particular its negatively charged state NV−, is an optically active defect which finds immediate application in the field of quantum sensing, while offering the possibility to represent a solid state quantum memory, due to its long lived nuclear spin states. The main technique we consider to create these atomic imperfections in diamond is femtosecond laser writing, based on the modification of the crystal structure of the material localized at the laser focus. Laser microfabrication represents a very versatile tool, which can be exploited also for the fabrication of photonic structures directly in the bulk of the crystal in a three-dimensional fashion. The combination of laser writing and the quantum properties of diamond and its colour centres will prove to be a valuable candidate in the development of real-world quantum devices. In particular, advances in the development of laser written room-temperature quantum sensors in diamond will be presented in this work, where the potential of the femtosecond micromachining technique will be shown through the fabrication of both photonic circuits and colour centres, together with the possibility to be integrated with other complementary techniques as ion implantation. If diamond and its NV centre appear to be very promising in the field of quantum sensing, alternative quantum materials with colour centres owning different spin, optical and charge properties with respect to the NV centre might be more suitable for other fields of application. Few examples are hexagonal Boron Nitride (hBN), Gallium Nitride (GaN), Aluminium Nitride (AlN) and Silicon Carbide (SiC). All the mentioned crystals are characterized by different and complementary advantages and disadvantages, but they all showed the existence of optically active spin defects, interesting for different platforms and applications. However, there is no standard way of creating localized colour centres in a deterministic fashion. This work tries to reach the goal of deterministic creation of colour centres in all the introduced material platforms. Through the femtosecond laser writing technique, a systematic study of the laser parameters and the resulting colour centres in the crystals will be performed, together with the optical and spin properties characterization of the found quantum emitters. In the challenge of finding a suitable technique and a related material platform for developing quantum devices, this work tries to explore the possibilities given by the femtosecond laser writing technique, exploiting laser pulses to locally modify the properties of the considered materials. Depending on the specific application, different crystals will be studied, highlighting their complementary behavior in terms of spin and optical properties. The results of the work are based on several proof-of-concept room-temperature quantum devices in diamond, where photonic circuits are directly integrated in the bulk of the material with the optically active colour centres, created either with the laser or through the complementary ion implantation technique. Finally, the results on the creation and characterization of colour centres in the introduced crystals will be presented, exploring the most promising platforms for such applications.
I dispositivi quantistici promettono di rappresentare una delle tecnologie della prossima generazione, basata sui fenomeni insoliti specifici della fisica quantistica applicata in dispositivi del mondo reale. Attraverso questo avanzamento tecnologico, sarà possibile misurare campi elettrici e magnetici deboli fino al limite dell'attività neuronale tra le sinapsi, o prevedere il comportamento di sistemi complessi come le previsioni meteorologiche o persino l'evoluzione del mercato azionario. Molti concetti sono già stati studiati da un punto di vista teorico e sono stati sviluppati algoritmi che mostrano le possibilità senza precedenti legate a questa tecnologia innovativa. Tuttavia, l'implementazione pratica dei dispositivi è tutto fuorché banale, attualmente essendo uno dei campi di ricerca più fiorenti e finanziati al mondo. Infatti, applicare i concetti della fisica quantistica in dispositivi del mondo reale significa trovare un modo per implementare alcune nozioni appartenenti al mondo microscopico nell'ambiente macroscopico in cui viviamo. Sono diversi gli approcci che stanno venendo sviluppati per raggiungere tale obiettivo, la maggior parte dei quali adatti per applicazioni specifiche, senza una procedura standardizzata o una piattaforma universale per lo sviluppo di tali dispositivi. In particolare, i principali campi di applicazione sono dati dalla metrologia quantistica, dall'informazione quantistica, dalla comunicazione quantistica e dalla simulazione quantistica. Indipendentemente dall'applicazione specifica, il principale requisito di un dispositivo quantistico sarebbe lo sviluppo di un sistema che possa esistere in una sovrapposizione coerente di stati deterministici per un tempo sufficientemente lungo per eseguire le operazioni richieste. Inoltre, i diversi blocchi funzionali che eseguono le specifiche operazioni devono essere sviluppati e integrati in dispositivi quantistici complessi. Attualmente, ci sono molteplici candidati al ruolo di sistemi quantistici in tali dispositivi, che vanno dagli atomi, ai fotoni e agli spin fino a strutture superconduttive mesoscopiche e nanomeccaniche più complesse. Tra le varie alternative, i difetti di spin otticamente attivi nei materiali a stato solido, chiamati anche centri colore, offrono il vantaggio di combinare spin debolmente interagenti, adatti per memorie quantistiche, con la potenza dei fotoni per la codifica e la trasmissione di informazioni quantistiche. Tali centri colore sono difetti localizzati nella struttura perfetta di un cristallo, che mostrano specifici livelli energetici otticamente attivi che possono essere sfruttati per l'elaborazione di informazione quantistica. Una volta effettuata la scelta dei centri colore come sistemi quantistici per lo sviluppo di dispositivi, la principale controversia verte sul cristallo da considerare e sulla tecnica di fabbricazione per l'effettiva implementazione di un dispositivo integrato. La scelta iniziale cade sul diamante e sul suo centro Vacanza-Azoto (NV) intrinsecamente presente nel cristallo, essendo storicamente uno dei centri colore più conosciuti e ampiamente studiati, che ha già dimostrato di essere un candidato valido per diverse applicazioni. Infatti, il centro NV nel diamante, e in particolare il suo stato carico negativamente NV−, è un difetto otticamente attivo che trova immediata applicazione nel campo dei sensori quantistici, offrendo nel contempo la possibilità di occupare il ruolo di una memoria quantistica a stato solido, grazie ai suoi stati di spin nucleare a lunga durata. La principale tecnica che consideriamo per creare queste imperfezioni atomiche nel diamante è la scrittura laser a femtosecondi, basata sulla modifica della struttura cristallina del materiale localizzata nel fuoco del laser. La microfabbricazione laser rappresenta uno strumento molto versatile, che può essere sfruttato anche per la creazione di strutture fotoniche direttamente nel volume del cristallo in maniera tridimensionale. La combinazione della scrittura laser e delle proprietà quantistiche del diamante e dei suoi centri colore si rivelerà un ottimo punto di partenza per lo sviluppo di dispositivi quantistici utilizzabili nel mondo reale. In particolare, in questo lavoro verranno presentati i progressi nello sviluppo di sensori quantistici a temperatura ambiente scritti con il laser nel diamante, mentre sarà dimostrato il potenziale della tecnica di microfabbricazione a femtosecondi, capace di produrre sia circuiti fotoniche, che centri colore, con la possibilità di integrarla con altre tecniche complementari come l'impiantazione ionica. Se il diamante e il suo centro NV sembrano molto promettenti nel campo dei sensori quantistici, materiali alternativi con centri di colore che possiedono diverse proprietà di spin, ottiche e di carica rispetto al centro NV potrebbero essere più adatti per altri campi di applicazione. Alcuni esempi sono il nitruro di boro esagonale (hBN), il nitruro di gallio (GaN), il nitruro di alluminio (AlN) e il carburo di silicio (SiC). Tutti i cristalli menzionati sono caratterizzati da vantaggi e svantaggi diversi e complementari, ma tutti hanno mostrato l'esistenza di difetti di spin otticamente attivi, interessanti per diverse piattaforme e applicazioni. Tuttavia, non esiste un modo standard di creare centri colore localizzati in modo deterministico. Questo lavoro cerca di raggiungere l'obiettivo della creazione deterministica di centri colore in tutte le piattaforme materiali introdotte. Attraverso la tecnica di scrittura laser a femtosecondi, sarà condotto uno studio sistematico dei parametri del laser e dei centri colore risultanti nei cristalli, insieme alla caratterizzazione delle proprietà ottiche e di spin degli emettitori quantistici trovati. Nella sfida di trovare una tecnica adatta e una relativa piattaforma materiale per lo sviluppo di dispositivi quantistici, questo lavoro cerca di esplorare le possibilità offerte dalla tecnica di scrittura laser a femtosecondi in diversi materiali quantistici emergenti.
Development of quantum technological devices through femtosecond laser micromachining of emerging quantum materials
COCCIA, GIULIO
2023/2024
Abstract
Quantum devices promise to represent one of the next generation technologies, based on the unusual phenomena specific of quantum physics applied in real-world devices. Through this technological advancement, it will be possible to detect record-low electric and magnetic fields to the limit of the neuronal activity between the synapsis or predict the behavior of complex systems as the weather forecast or even the evolution of the stock market. Many concepts have already been studied from a theoretical point of view and algorithms have been developed showing the unprecedented possibilities related to this innovative technology. However, the practical implementation of devices is anything but trivial, currently being one of the most flourishing and financed fields of research. In fact, applying the concepts of quantum physics in real-world devices means finding a way to implement some notions belonging to the microscopic world in the macroscopic environment we live in. Several are the approaches that are being developed to fulfill such a challenging requirement, most of them suitable for specific applications, without a standardized procedure or a universal platform for the development of such devices. In particular, the main fields of applications are given by quantum sensing, quantum information, quantum communication and quantum simulation. Independently from the specific application, the main requirement of a quantum device would be the development of a system that can exist in a coherent superposition of deterministic states for a long enough time to perform the required operations. Moreover, the building blocks performing the different specific operations have to be developed and integrated in fully functional quantum devices. Currently, there are multiple candidates viable as quantum systems ranging from atoms, photons and spins to more complex mesoscopic superconductive and nanomechanical structures. Among others, optically active spin defects in solid state materials, also called colour centres, offer the advantage of combining weakly interacting spins suitable for quantum memories to the strengths of photons for encoding and transmitting quantum information, just as a few examples. Such colour centres are defects localized in the perfect structure of a crystal, showing specific optically active energy levels that can be exploited for processing quantum information. Once made the choice of colour centres as quantum systems for the development of devices, the main dispute falls on the crystal to be considered and the processing technique for the actual implementation of an integrated device. The initial choice falls on diamond and its intrinsically present Nitrogen Vacancy (NV) centre being historically one of the best known and widely studied colour centres, which has already proven to be a valuable candidate for several applications. In fact, the NV centre in diamond, and in particular its negatively charged state NV−, is an optically active defect which finds immediate application in the field of quantum sensing, while offering the possibility to represent a solid state quantum memory, due to its long lived nuclear spin states. The main technique we consider to create these atomic imperfections in diamond is femtosecond laser writing, based on the modification of the crystal structure of the material localized at the laser focus. Laser microfabrication represents a very versatile tool, which can be exploited also for the fabrication of photonic structures directly in the bulk of the crystal in a three-dimensional fashion. The combination of laser writing and the quantum properties of diamond and its colour centres will prove to be a valuable candidate in the development of real-world quantum devices. In particular, advances in the development of laser written room-temperature quantum sensors in diamond will be presented in this work, where the potential of the femtosecond micromachining technique will be shown through the fabrication of both photonic circuits and colour centres, together with the possibility to be integrated with other complementary techniques as ion implantation. If diamond and its NV centre appear to be very promising in the field of quantum sensing, alternative quantum materials with colour centres owning different spin, optical and charge properties with respect to the NV centre might be more suitable for other fields of application. Few examples are hexagonal Boron Nitride (hBN), Gallium Nitride (GaN), Aluminium Nitride (AlN) and Silicon Carbide (SiC). All the mentioned crystals are characterized by different and complementary advantages and disadvantages, but they all showed the existence of optically active spin defects, interesting for different platforms and applications. However, there is no standard way of creating localized colour centres in a deterministic fashion. This work tries to reach the goal of deterministic creation of colour centres in all the introduced material platforms. Through the femtosecond laser writing technique, a systematic study of the laser parameters and the resulting colour centres in the crystals will be performed, together with the optical and spin properties characterization of the found quantum emitters. In the challenge of finding a suitable technique and a related material platform for developing quantum devices, this work tries to explore the possibilities given by the femtosecond laser writing technique, exploiting laser pulses to locally modify the properties of the considered materials. Depending on the specific application, different crystals will be studied, highlighting their complementary behavior in terms of spin and optical properties. The results of the work are based on several proof-of-concept room-temperature quantum devices in diamond, where photonic circuits are directly integrated in the bulk of the material with the optically active colour centres, created either with the laser or through the complementary ion implantation technique. Finally, the results on the creation and characterization of colour centres in the introduced crystals will be presented, exploring the most promising platforms for such applications.File | Dimensione | Formato | |
---|---|---|---|
ThesisGCoccia.pdf
accessibile in internet per tutti
Descrizione: DEVELOPMENT OF QUANTUM TECHNOLOGICAL DEVICES THROUGH FEMTOSECOND LASER MICROMACHINING OF EMERGING QUANTUM MATERIALS
Dimensione
40.78 MB
Formato
Adobe PDF
|
40.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220133