Within the current energy transition, the thermochemical valorisation of waste lignocellulosic biomass represents a key pathway for circular economy and a promising solution for the generation of valuable biochemicals and biofuels. In this context, pyrolysis, the thermal degradation of biomass in an oxygen-free atmosphere into a complex pool of products - consisting of a gas stream, bio-oil and biochar - emerges as a promising process for the production of liquid biofuels that can support the decarbonization of critical sectors, like aviation and marine markets. Beyond its standalone importance, the study of pyrolysis is important also because it constitutes the preliminary devolatilization stage of all thermal processes, including gasification and combustion. However, the complex multi-component and multi-phase nature of this process has hindered the obtainment of rigorous experimental data on biomass devolatilization, necessary for the refinement of kinetic schemes and technology optimization. Moreover, bio-oil streams currently contain unstable light oxygenates that do not meet the fuel quality standards. This PhD thesis aims to contribute to progress biomass thermochemical valorisation with a dual research approach: the kinetic investigation of biomass pyrolysis and the study of catalytic C-C coupling reactions for the upgrade of light bio-oxygenates into fuel-like species. The study of biomass pyrolysis was addressed with a double strategy that combined experimental investigation and kinetic modelling. The initial goal was the development of an experimental methodology and setup in Polimi. A novel TGA-based experimental protocol was developed, where tests were performed with full control of operating conditions and multiple analytical methodologies allowed to precisely quantify pyrolysis products. During the PhD work, this methodology was applied to study the pyrolysis of biomasses of increasing complexity, starting from cellulose and progressing to three types of hemicelluloses – xylan, glucomannan and arabinoxylan – and mixtures of them. Experimental data were compared with the predictions of state-of-art lumped kinetic schemes, showing significant margins of model improvement, in particular in terms of products speciation. Therefore, this experimental methodology has proven a flexible and unique solution for the comprehension of biomass devolatilization chemistry and the tuning of kinetic schemes. Additionally, an improved version of the kinetic scheme of cellulose pyrolysis was elaborated, exploiting newly in-house experimental data as well as literature data for validation. Moreover, further pyrolysis experiments were performed on the same bio-feedstocks, in a fixed bed reactor in the laboratories of NTNU (Norwegian University of Science and Technology, Trondheim, Norway), aiming to test larger and more representative scales, and to validate the observations collected in the ideal TGA-system. Besides, the study of the catalytic valorisation of pyrolysis vapours was addressed by investigating C-C coupling reactions of light oxygenates, the species that mostly lower the quality of bio-oil. These are chain-growth reactions that transform light oxygenates into species with longer C-chain and lower O-content, thus enhancing their stability and heating value. Among catalytic formulations, TiO2 emerged as an active catalyst. The research involved the kinetic study of two model reacting systems on TiO₂: the ketonization of acetic acid (C₂, the simplest carboxylic acid) and the condensation of acetone (C₃, the simplest ketone). Catalytic activity tests were coupled with characterizations on both fresh and spent catalytic samples, aiming to associate activity to surface features. The experimental data were rationalized into a reaction scheme involving several consecutive and parallel reaction routes. The association of catalytic activity tests to a thermodynamic analysis and a study on dynamic trends has shown the presence of both thermodynamic and kinetic bottlenecks, that hampered the catalyst performance. In conclusion, this research has advanced the understanding of biomass thermochemical valorisation. The development of an innovative experimental methodology for the kinetic study of pyrolysis has made available new but fundamental piece of information on model biomasses. Furthermore, the catalytic potential of TiO₂ for upgrading light oxygenates via chain-growth reactions has been deepened. Overall, these findings contribute to broadening the knowledge on thermal processes for the valorisation of waste lignocellulosic biomasses towards sustainable energy production.
Nel contesto dell’attuale transizione energetica, la valorizzazione termochimica delle biomasse lignocellulosiche rappresenta un processo chiave per l'economia circolare e una soluzione promettente per la generazione di biochemicals e biocarburanti. In questo contesto, il processo di pirolisi, cioè la degradazione termica in atmosfera inerte delle biomasse in una complessa varietà di prodotti gassosi, liquidi (bio-olio) e solidi (bio-char), rappresenta una via promettente per la produzione di biocarburanti liquidi utili alla decarbonizzazione di settori critici, come i mercati dell'aviazione e marittimo. Lo studio della pirolisi è importante anche perché questa, oltre ad avere una sua importanza come processo indipendente, costituisce la fase preliminare di volatilizzazione in tutti i processi termici, comprese la gassificazione e la combustione. Tuttavia, la natura complessa, multicomponente e multifase di questo processo ha ostacolato il conseguimento di dati sperimentali rigorosi e completi sulla volatilizzazione della biomassa, necessari per il perfezionamento degli schemi cinetici e l'ottimizzazione della tecnologia. Inoltre, le correnti di bio-olio attualmente contengono composti ossigenati leggeri instabili che non ne permettono il diretto utilizzo come carburante. Questa tesi di dottorato vuole contribuire al progresso della valorizzazione termochimica delle biomasse con un approccio di ricerca duale: l'indagine cinetica della pirolisi di biomassa e lo studio di reazioni catalitiche di C-C coupling per la trasformazione degli ossigenati leggeri. Lo studio della pirolisi di biomassa è stato affrontato con una doppia strategia che ha coinvolto sia un’indagine sperimentale sia un’attività di modellazione cinetica. Il primo obiettivo perseguito è stato lo sviluppo di una nuova metodologia e un nuovo setup sperimentale nei laboratori Polimi. Il protocollo sviluppato è basato su prove di pirolisi svolte in una termobilancia, dove i test sono stati eseguiti con pieno controllo delle condizioni operative e diverse metodologie analitiche hanno permesso di quantificare con precisione tutti i prodotti della pirolisi. Durante il lavoro di dottorato, questa metodologia è stata applicata allo studio della pirolisi di biomasse di crescente complessità, partendo dalla cellulosa e proseguendo con tre tipi di emicellulose - xilano, glucomannano e arabinoxilano - e le loro miscele. I dati sperimentali ottenuti sono stati confrontati con le previsioni degli schemi cinetici disponibili in letteratura, mostrando ampi margini di miglioramento di questi modelli, in particolare in termini di speciazione dei prodotti. Pertanto, questa metodologia sperimentale si è dimostrata una soluzione flessibile ed efficace per la comprensione della chimica di volatilizzazione della biomassa e per l'adattamento di schemi cinetici. Inoltre, durante questo dottorato è stato concluso lo sviluppo di uno schema cinetico di pirolisi di cellulosa, sfruttando i dati sperimentali ottenuti. Ulteriori esperimenti di pirolisi sono stati eseguiti sulle stesse biomasse modello in un reattore a letto fisso nei laboratori dell’università NTNU (Norwegian University of Science and Technology, Trondheim, Norvegia), al fine di testare scale più grandi e rappresentative e convalidare le osservazioni raccolte nel sistema ideale con microbilancia. Lo studio della valorizzazione catalitica dei vapori di pirolisi è stato affrontato investigando le reazioni di C-C coupling degli ossigenati leggeri, che sono i composti responsabili della bassa qualità del bio-olio da pirolisi. Queste sono reazioni di crescita della catena che trasformano gli ossigenati leggeri in specie con catena carboniosa più lunga e contenuto di ossigeno inferiore, migliorando così la loro stabilità e il valore calorifico. Tra le formulazioni catalitiche, l’ossido di titanio TiO₂ è emerso come un catalizzatore attivo. La ricerca ha coinvolto lo studio cinetico di due sistemi reattivi modello su TiO₂: la chetonizzazione dell'acido acetico (C₂, il più semplice acido carbossilico) e la condensazione dell'acetone (C₃, il più semplice chetone). I test di attività catalitica sono stati affiancati da caratterizzazioni su campioni catalitici fresh e spent, per associare il comportamento osservato in fase di testing alle proprietà superficiali. I dati sperimentali sono stati razionalizzati in uno schema di reazione che coinvolge diverse vie di reazione consecutive e parallele. Inoltre, un'analisi termodinamica e uno studio dei trend di condizionamento del catalizzatore ha mostrato la presenza di limitazioni sia termodinamiche che cinetiche, che ostacolano le prestazioni del catalizzatore. In conclusione, questa ricerca ha contribuito ad un avanzamento sulla comprensione della valorizzazione termochimica della biomassa. Lo sviluppo di una metodologia sperimentale innovativa per lo studio cinetico della pirolisi ha reso disponibili nuove e fondamentali informazioni su biomasse modello. Inoltre, il potenziale catalitico della TiO₂ per la conversione degli ossigenati leggeri tramite reazioni di crescita della catena è stato approfondito. Questi risultati contribuiscono ad ampliare la conoscenza sui processi termici per la valorizzazione delle biomasse lignocellulosiche di scarto per la produzione di energia sostenibile.
Biomass to fuels : development of thermochemical conversion processes
Piazza, Veronica
2023/2024
Abstract
Within the current energy transition, the thermochemical valorisation of waste lignocellulosic biomass represents a key pathway for circular economy and a promising solution for the generation of valuable biochemicals and biofuels. In this context, pyrolysis, the thermal degradation of biomass in an oxygen-free atmosphere into a complex pool of products - consisting of a gas stream, bio-oil and biochar - emerges as a promising process for the production of liquid biofuels that can support the decarbonization of critical sectors, like aviation and marine markets. Beyond its standalone importance, the study of pyrolysis is important also because it constitutes the preliminary devolatilization stage of all thermal processes, including gasification and combustion. However, the complex multi-component and multi-phase nature of this process has hindered the obtainment of rigorous experimental data on biomass devolatilization, necessary for the refinement of kinetic schemes and technology optimization. Moreover, bio-oil streams currently contain unstable light oxygenates that do not meet the fuel quality standards. This PhD thesis aims to contribute to progress biomass thermochemical valorisation with a dual research approach: the kinetic investigation of biomass pyrolysis and the study of catalytic C-C coupling reactions for the upgrade of light bio-oxygenates into fuel-like species. The study of biomass pyrolysis was addressed with a double strategy that combined experimental investigation and kinetic modelling. The initial goal was the development of an experimental methodology and setup in Polimi. A novel TGA-based experimental protocol was developed, where tests were performed with full control of operating conditions and multiple analytical methodologies allowed to precisely quantify pyrolysis products. During the PhD work, this methodology was applied to study the pyrolysis of biomasses of increasing complexity, starting from cellulose and progressing to three types of hemicelluloses – xylan, glucomannan and arabinoxylan – and mixtures of them. Experimental data were compared with the predictions of state-of-art lumped kinetic schemes, showing significant margins of model improvement, in particular in terms of products speciation. Therefore, this experimental methodology has proven a flexible and unique solution for the comprehension of biomass devolatilization chemistry and the tuning of kinetic schemes. Additionally, an improved version of the kinetic scheme of cellulose pyrolysis was elaborated, exploiting newly in-house experimental data as well as literature data for validation. Moreover, further pyrolysis experiments were performed on the same bio-feedstocks, in a fixed bed reactor in the laboratories of NTNU (Norwegian University of Science and Technology, Trondheim, Norway), aiming to test larger and more representative scales, and to validate the observations collected in the ideal TGA-system. Besides, the study of the catalytic valorisation of pyrolysis vapours was addressed by investigating C-C coupling reactions of light oxygenates, the species that mostly lower the quality of bio-oil. These are chain-growth reactions that transform light oxygenates into species with longer C-chain and lower O-content, thus enhancing their stability and heating value. Among catalytic formulations, TiO2 emerged as an active catalyst. The research involved the kinetic study of two model reacting systems on TiO₂: the ketonization of acetic acid (C₂, the simplest carboxylic acid) and the condensation of acetone (C₃, the simplest ketone). Catalytic activity tests were coupled with characterizations on both fresh and spent catalytic samples, aiming to associate activity to surface features. The experimental data were rationalized into a reaction scheme involving several consecutive and parallel reaction routes. The association of catalytic activity tests to a thermodynamic analysis and a study on dynamic trends has shown the presence of both thermodynamic and kinetic bottlenecks, that hampered the catalyst performance. In conclusion, this research has advanced the understanding of biomass thermochemical valorisation. The development of an innovative experimental methodology for the kinetic study of pyrolysis has made available new but fundamental piece of information on model biomasses. Furthermore, the catalytic potential of TiO₂ for upgrading light oxygenates via chain-growth reactions has been deepened. Overall, these findings contribute to broadening the knowledge on thermal processes for the valorisation of waste lignocellulosic biomasses towards sustainable energy production.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis-Veronica Piazza-upload.pdf
non accessibile
Descrizione: PhD Thesis-V. Piazza
Dimensione
10.52 MB
Formato
Adobe PDF
|
10.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220513