The investigation of the diffusion of small molecules represents a cornerstone in scientific inquiry, with implications spanning disciplines from chemistry to biology. As technology and methodologies have advanced, so too has our ability to delve into the intricacies of molecular dynamics. The current state of the art in this field reflects a nuanced understanding achieved through diverse experimental and computational approaches. One of the key advancements lies in the refinement of imaging techniques. Here, NMR spectroscopy has emerged as a cornerstone in the study of molecular diffusion. Pioneering techniques, such as Pulsed Field Gradient NMR, have provided researchers with a non-invasive mean to measure diffusion coefficients. This allows for the precise quantification of how molecules move in different environments, ranging from solutions to biological tissues. NMR's ability to explore diffusion at the molecular level and in complex systems has been instrumental in unravelling the dynamics of small molecules. In recent years, the field of drug delivery has evolved, with researchers focusing on creating novel strategies to enhance the targeted delivery of medications. As the traditional approach of systemic drug administration often leads to side effects and limited effectiveness, drug delivery now aims for precision and efficiency, introducing a new era in personalized medicine. This work is set in this landscape, where the basic idea came from thinking about the molecular motion of small drugs within a gel carrier, how it can be studied efficiently and its correlation with the macroscopic in vitro release kinetics. As this topic can have a huge number of ramifications, both the choice of analysis technique and of materials was fundamental in order to have a cohesive work. Nuclear Magnetic Resonance (NMR) was used as main technique as it is a fundamental tool in the study of diffusion coefficients in a non-invasive way and data obtained in this way can be easily analysed through various mathematical methods, giving an insight on the type of motion of the molecules under study. A great advantage of the technique is its versatility, both in types of experiments that can be performed and the ability to probe different materials (solid, semi-solid and liquid systems). Using this technique, during my Ph.D. a methodology was developed to study controlled release of drug from gel systems and how it is related/influenced by drug-polymer interactions. Diffusion at a microscopic level, and consequent molecular interactions, are studied through HR-MAS NMR, while macroscopic release is studied using a technique based on quantitative NMR. To determine the validity and range of application of this methodology, it was important to find different gels following a few basic guidelines: biocompatibility of the components, ease of preparation, ability to dissolve/incapsulate both hydrophilic and hydrophobic drugs and stability at 37°C. Three different systems were then chosen: hydrogels, bijels and eutectogels. The results obtained confirmed that the methodology can be applied to both hydrophilic and hydrophobic systems, chemical and physical gels and used to study the behaviour of different drugs. First, biphasic water/oil porous structures stabilized by hydroxyapatite or nanogel nanoparticles show reduced diffusion coefficients of drugs compared to bulk solutions, showcasing the influence of microstructure and nanoparticle choice on drug delivery behaviour. Second, the development of type V DES/DBS supramolecular eutectogels reveals complex non-covalent interactions between gel components and drug molecules, affecting solubilization, diffusion, and release profiles, particularly emphasizing thermo/pH-responsive control. Finally, investigation into diffusion regimes within agarose-carbomer and hyaluronic acid-based hydrogels elucidates superdiffusive motion of sodium salicylate due to electrostatic interactions, contrasting with the unrestricted diffusion of ethosuximide. Moreover, simultaneous drug loading unveils drug-drug interactions influencing both microscopic and macroscopic dynamics, emphasizing the necessity of understanding drug dynamics at a microscopic level for effective drug delivery carrier design. The culmination of these studies not only highlights the versatility and significance of advanced drug delivery systems but also the necessity of a multidimensional understanding of drug-polymer interactions for the rational design of next-generation drug delivery platforms tailored to diverse therapeutic needs.
Lo studio della diffusione di piccole molecole rappresenta un elemento fondamentale della ricerca scientifica, con applicazioni che spaziano in vari ambiti, dalla chimica alla biologia. Man mano che la tecnologia e le metodologie sono progredito, così è cresciuta la nostra capacità di approfondire le complessità della dinamica molecolare. Lo stato attuale dell'arte in questo campo riflette una comprensione sfumata ottenuta attraverso diverse approcci sperimentali e computazionali. Uno dei principali progressi risiede nel perfezionamento delle tecniche di imaging. In questo contesto, la spettroscopia NMR (Risonanza Magnetica Nucleare) è emersa come punto fondamentale nello studio della diffusione molecolare. Tecniche innovative, come il Pulsed Field Gradient NMR, hanno fornito ai ricercatori un mezzo non invasivo per misurare i coefficienti di diffusione, consentendo la quantificazione precisa di come le molecole si muovono in diversi ambienti, dalle soluzioni ai tessuti biologici. Negli ultimi anni, il campo della somministrazione di farmaci si è evoluto, con i ricercatori che si concentrano sulla creazione di strategie innovative per migliorare la somministrazione mirata dei farmaci. Poiché l'approccio tradizionale spesso porta a effetti collaterali e limitata efficacia, la somministrazione di farmaci mira ora alla precisione e all'efficienza, introducendo una nuova era nella medicina personalizzata. Questo lavoro è ambientato in questo panorama, dove l'idea di base è nata pensando al movimento molecolare di farmaci all'interno di un vettore gel, come può essere studiato in modo efficiente e la sua correlazione con la cinetica macroscopica del rilascio in vitro. Poiché questo argomento può avere un enorme numero di ramificazioni, sia la scelta della tecnica di analisi che dei materiali è stata fondamentale per avere un lavoro il più possibile coeso. La Risonanza Magnetica Nucleare (NMR) è stata utilizzata come tecnica principale in quanto è uno strumento fondamentale nello studio dei coefficienti di diffusione in modo non invasivo e i dati ottenuti in questo modo possono essere facilmente analizzati attraverso vari metodi matematici, fornendo una visione sul tipo di movimento delle molecole in studio. Un grande vantaggio della tecnica è la sua versatilità, sia nei tipi di esperimenti che possono essere eseguiti che nella capacità di esplorare diversi materiali (sistemi solidi, semi-solidi e liquidi). Utilizzando questa tecnica, durante il mio dottorato è stata sviluppata una metodologia per studiare il rilascio controllato di vari farmaci da sistemi gel e questo come è correlato/influenzato dalle interazioni farmaco-polimero. La diffusione a livello microscopico e le conseguenti interazioni molecolari sono studiate attraverso l’HR-MAS NMR (High-Resolution Magic Angle Spinning NMR), mentre il rilascio macroscopico è studiato utilizzando una tecnica basata sull’NMR quantitativa. Per determinare la validità e il campo di applicazione di questa metodologia, è stato importante trovare diversi gel seguendo alcune linee guida di base: biocompatibilità dei componenti, facilità di preparazione, capacità di sciogliere/incapsulare sia farmaci idrofilici che idrofobici e stabilità a 37°C. Sono stati quindi scelti tre diversi sistemi: idrogel, bijel ed eutectogel. I risultati ottenuti hanno confermato che la metodologia può essere applicata sia a sistemi idrofilici che idrofobici, a gel chimici e fisici, e utilizzata per studiare il comportamento di diversi farmaci. In primo luogo, strutture porose acqua/olio bifasiche stabilizzate da idrossiapatite o nanoparticelle di nanogel mostrano coefficienti di diffusione dei farmaci ridotti rispetto alle soluzioni bulk, mettendo in mostra l'influenza della microstruttura e della scelta delle nanoparticelle sul comportamento della somministrazione del farmaco. In secondo luogo, lo sviluppo di eutectogel supramolecolari di tipo V DES/DBS rivela complesse interazioni non covalenti tra i componenti del gel e le molecole del farmaco, influenzando la solubilizzazione, la diffusione e i profili di rilascio, enfatizzando in particolare il controllo termo/pH-responsivo. Infine, l'indagine sui regimi di diffusione all'interno di idrogel a base di agarosio-carbomer e acido ialuronico chiarisce il moto superdiffusivo del salicilato di sodio a causa delle interazioni elettrostatiche, in contrasto con la diffusione non limitata dell'etosuccimide. Inoltre, il carico simultaneo di farmaci rivela interazioni farmaco-farmaco che influenzano sia la dinamica microscopica che macroscopica, sottolineando la necessità di comprendere la dinamica dei farmaci a livello microscopico per una progettazione efficace dei vettori di somministrazione dei farmaci. Il culmine di questi studi evidenzia non solo la versatilità e l'importanza dei sistemi avanzati di somministrazione dei farmaci, ma anche la necessità di una comprensione multidimensionale delle interazioni farmaco-polimero per la progettazione razionale di piattaforme di somministrazione dei farmaci di prossima generazione adattate alle diverse esigenze terapeutiche.
Diffusion motion in confined systems : NMR experimental approaches
VANOLI, VALERIA
2023/2024
Abstract
The investigation of the diffusion of small molecules represents a cornerstone in scientific inquiry, with implications spanning disciplines from chemistry to biology. As technology and methodologies have advanced, so too has our ability to delve into the intricacies of molecular dynamics. The current state of the art in this field reflects a nuanced understanding achieved through diverse experimental and computational approaches. One of the key advancements lies in the refinement of imaging techniques. Here, NMR spectroscopy has emerged as a cornerstone in the study of molecular diffusion. Pioneering techniques, such as Pulsed Field Gradient NMR, have provided researchers with a non-invasive mean to measure diffusion coefficients. This allows for the precise quantification of how molecules move in different environments, ranging from solutions to biological tissues. NMR's ability to explore diffusion at the molecular level and in complex systems has been instrumental in unravelling the dynamics of small molecules. In recent years, the field of drug delivery has evolved, with researchers focusing on creating novel strategies to enhance the targeted delivery of medications. As the traditional approach of systemic drug administration often leads to side effects and limited effectiveness, drug delivery now aims for precision and efficiency, introducing a new era in personalized medicine. This work is set in this landscape, where the basic idea came from thinking about the molecular motion of small drugs within a gel carrier, how it can be studied efficiently and its correlation with the macroscopic in vitro release kinetics. As this topic can have a huge number of ramifications, both the choice of analysis technique and of materials was fundamental in order to have a cohesive work. Nuclear Magnetic Resonance (NMR) was used as main technique as it is a fundamental tool in the study of diffusion coefficients in a non-invasive way and data obtained in this way can be easily analysed through various mathematical methods, giving an insight on the type of motion of the molecules under study. A great advantage of the technique is its versatility, both in types of experiments that can be performed and the ability to probe different materials (solid, semi-solid and liquid systems). Using this technique, during my Ph.D. a methodology was developed to study controlled release of drug from gel systems and how it is related/influenced by drug-polymer interactions. Diffusion at a microscopic level, and consequent molecular interactions, are studied through HR-MAS NMR, while macroscopic release is studied using a technique based on quantitative NMR. To determine the validity and range of application of this methodology, it was important to find different gels following a few basic guidelines: biocompatibility of the components, ease of preparation, ability to dissolve/incapsulate both hydrophilic and hydrophobic drugs and stability at 37°C. Three different systems were then chosen: hydrogels, bijels and eutectogels. The results obtained confirmed that the methodology can be applied to both hydrophilic and hydrophobic systems, chemical and physical gels and used to study the behaviour of different drugs. First, biphasic water/oil porous structures stabilized by hydroxyapatite or nanogel nanoparticles show reduced diffusion coefficients of drugs compared to bulk solutions, showcasing the influence of microstructure and nanoparticle choice on drug delivery behaviour. Second, the development of type V DES/DBS supramolecular eutectogels reveals complex non-covalent interactions between gel components and drug molecules, affecting solubilization, diffusion, and release profiles, particularly emphasizing thermo/pH-responsive control. Finally, investigation into diffusion regimes within agarose-carbomer and hyaluronic acid-based hydrogels elucidates superdiffusive motion of sodium salicylate due to electrostatic interactions, contrasting with the unrestricted diffusion of ethosuximide. Moreover, simultaneous drug loading unveils drug-drug interactions influencing both microscopic and macroscopic dynamics, emphasizing the necessity of understanding drug dynamics at a microscopic level for effective drug delivery carrier design. The culmination of these studies not only highlights the versatility and significance of advanced drug delivery systems but also the necessity of a multidimensional understanding of drug-polymer interactions for the rational design of next-generation drug delivery platforms tailored to diverse therapeutic needs.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato_Vanoli.pdf
Open Access dal 09/04/2025
Dimensione
6.4 MB
Formato
Adobe PDF
|
6.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220553