The space industry is undergoing rapid transformation. In this revolution, CubeSats, standardized and cost-effective miniaturized probes, are playing a significant role by reducing mission costs and development times. Although most of the nanosatellites have been thus far launched into low Earth orbits, there is a growing interest in employing them for deep-space exploration. However, the increasing number of upcoming interplanetary CubeSat missions will render traditional ground-based navigation methods unsustainable, necessitating the development of autonomous and efficient solutions. To address this problem, the ERC-funded EXTREMA project aims at enabling self-driving spacecraft, challenging the current paradigm with which probes are navigated in deep space. In this framework, the thesis presents a fully integrated optical navigation algorithm for CubeSats application, exploiting deep-space images containing unresolved celestial bodies to localize the probe in the interplanetary space autonomously. The thesis begins by developing and testing the end-to-end algorithm on different deep-space trajectories of increasing fidelity. The navigation software embeds a tailored image processing pipeline designed to extract celestial body positions from deep-space images. Both synthetic and real sky-field images are used to evaluate the pipeline performance, demonstrating high accuracy in attitude solution and planet identification. Synthetic images are generated by a new high-fidelity rendering engine, which models various noise sources coming from the external environment and the optical system. Additionally, the algorithm TRL is enhanced through progressive validation and testing with representative hardware in the loop, such as optical facilities and miniaturized processors, verifying the navigation software robustness and suitability to the CubeSat application. Finally, the thesis outlines the technology transfer process from research to a marketable navigation sensor, including a preliminary market analysis and exploitation plan.
L'industria spaziale è in grande fermento. All’interno di questo panorama, i CubeSats, satelliti miniaturizzati e standardizzati, stanno rivestendo un ruolo significativo nel ridurre i costi e i tempi di sviluppo delle missioni spaziali. Sebbene principalmente impiegati in orbita terrestre bassa, negli ultimi anni, vi è crescente interesse nell'espandere il loro utilizzo anche allo spazio profondo. Tuttavia, con il rapido aumento delle missioni spaziali, diventa sempre più evidente che i tradizionali metodi di navigazione da terra non saranno più sufficienti per controllare tutti i satelliti in orbita. Questa situazione richiede lo sviluppo di soluzioni alternative, autonome ed efficienti. In questo contesto, il progetto EXTREMA si pone l'obbiettivo di aumentare l'autonomia delle sonde lanciate nello spazio interplanetario. In particolare, questa tesi, parte integrante del progetto, propone e illustra un algoritmo di navigazione ottica che, sfruttando le osservazioni di corpi celesti non risolti, è in grado di localizzare autonomamente la sonda nello spazio profondo. Inizialmente, l’algoritmo viene testato su diverse traiettorie con crescente grado di fedeltà, utilizzando immagini sintetiche generate da un software di rendering. Successivamente, il software di navigazione viene validato attraverso una serie progressiva di test che includono l'utilizzo di hardware rappresentativo all'interno del loop di simulazione, verificando così la sua compatibilità con piattaforme miniaturizzate. Infine, la tesi presenta il processo di trasferimento tecnologico dalla ricerca a un sensore di navigazione commercializzabile con un’analisi preliminare del mercato e un piano di sfruttamento applicabile.
Autonomous vision-based navigation for deep-space cubeSats : algorithm development and hardware validation
Andreis, Eleonora
2023/2024
Abstract
The space industry is undergoing rapid transformation. In this revolution, CubeSats, standardized and cost-effective miniaturized probes, are playing a significant role by reducing mission costs and development times. Although most of the nanosatellites have been thus far launched into low Earth orbits, there is a growing interest in employing them for deep-space exploration. However, the increasing number of upcoming interplanetary CubeSat missions will render traditional ground-based navigation methods unsustainable, necessitating the development of autonomous and efficient solutions. To address this problem, the ERC-funded EXTREMA project aims at enabling self-driving spacecraft, challenging the current paradigm with which probes are navigated in deep space. In this framework, the thesis presents a fully integrated optical navigation algorithm for CubeSats application, exploiting deep-space images containing unresolved celestial bodies to localize the probe in the interplanetary space autonomously. The thesis begins by developing and testing the end-to-end algorithm on different deep-space trajectories of increasing fidelity. The navigation software embeds a tailored image processing pipeline designed to extract celestial body positions from deep-space images. Both synthetic and real sky-field images are used to evaluate the pipeline performance, demonstrating high accuracy in attitude solution and planet identification. Synthetic images are generated by a new high-fidelity rendering engine, which models various noise sources coming from the external environment and the optical system. Additionally, the algorithm TRL is enhanced through progressive validation and testing with representative hardware in the loop, such as optical facilities and miniaturized processors, verifying the navigation software robustness and suitability to the CubeSat application. Finally, the thesis outlines the technology transfer process from research to a marketable navigation sensor, including a preliminary market analysis and exploitation plan.File | Dimensione | Formato | |
---|---|---|---|
Andreis_phd_thesis_2024.pdf
accessibile in internet per tutti
Descrizione: PhD thesis
Dimensione
42.39 MB
Formato
Adobe PDF
|
42.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220733