The main goal of this thesis was the development and characterization of SCARLET (SDD-ASIC ARray for Large Event Throughput) Analog Pulse Processor (APP), a new high-density, multichannel X-ray detector for spectroscopic applications that can achieve both high energy resolution and high counting rate. The chip layout is compatible for bump-bonding assembly with 2 × 2, 2-mm pitch, monolithic arrays of Silicon Drift Detector (SDD), obtaining a so-called Hybrid Pixel Detector. This configuration comes with a set of challenges that need to be adressed. Reducing the pixel area of the detector can introduce challenges such as charge sharing. The adoption of flip-chip bump bonding technology introduces challenges like missing bonds, local shorts, temperature or lifetime reliability, verification procedures, and the presence of parasitic capacitance and resistance in the bump solder. Another critical challenge is the integration of the Charge Sensitive Amplifier (CSA) with the rest of the pulse processing electronics, which introduces mixed-signal issues. The ASIC development has been started from its predecessor, TERA (Throughput Enhanced Readout ASIC), designed in the same 0.35 μm CMOS technology node. Each channel includes the CSA, a 7th-order semi-Gaussian shaping amplifier with controllable shaping times and full scale ranges, followed by a peak stretcher and a switched capacitor analog-memory. Each channel is also equipped with a dedicated peak detector and a novel pile up rejection (PUR) logic. Each pair of channels is digitized by a 12-bit on-chip Successive-Approximation Register (SAR) ADC. The thesis also addresses the development and characterization of a new 1-mm thick 2×4 monolithic array of SDDs, with a pixel active area of 8×8 mm2, in the framework of SIDDHARTA-2 experiment. This experiment aims to deepen the knowledge of strong nuclear interactions. Moreover, the thesis presents the development of a novel detection module based on these SDDs, coupled with CMOS-based Charge Sensitive Amplifiers arranged in a stacked structure with the goal to enhance the detection efficiency in the hard X-ray range. This solution aims to further increase the absorption efficiency of the system without acting on the substrate thickness of the SDD.
L’obiettivo principale di questa tesi è lo sviluppo e la caratterizzazione di SCARLET (SDD-ASIC ARray for Large Event Throughput) Analog Pulse Processor (APP), un nuovo rivelatore di raggi X multicanale ad alta densità per applicazioni spettroscopiche in grado di fornire sia un’alta risoluzione energetica che un’elevata velocità di conteggio. Il layout del chip è compatibile con l’assemblaggio bump-bonding con matrici monolitiche 2 × 2, con passo di 2 mm, di Silicon Drift Detectors (SDD), ottenendo il cosiddetto Hybrid Pixel Detector. Questo tipo di configurazione comporta una serie di sfide che devono essere affrontate. La riduzione dell’area dei pixel del rivelatore può introdurre problemi quali il charge sharing. L’adozione della tecnologia di bump bonding può determinare la presenza di connessioni mancanti, cortocircuiti locali, problemi di affidabilità in termini di temperatura e durata, procedure di verifica complesse e la presenza di capacità e resistenze parassite nella saldatura dei bump. Un’ulteriore difficoltà è data dall’integrazione del Charge Sensitive Amplifier (CSA) con il resto dell’elettronica di elaborazione degli impulsi, il quale introduce problemi di mixed-signals. L’ASIC è stato sviluppato partendo dal suo predecessore, TERA (Throughput Enhanced Readout ASIC), progettato con lo stesso nodo tecnologico CMOS da 0.35 μm. Ciascun canale include il CSA, un filtro semi-Gaussiano del 7° ordine con tempi di filtraggio e fondi scala controllabili, un Peak Stretcher e una memoria analogica a condensatori commutati. Ogni canale è inoltre dotato di un rilevatore di picco dedicato e di un’innovativa logica di Pile-UP Rejection (PUR). Ogni coppia di canali è digitalizzata da un Successive-Approximation Register (SAR) ADC a 12 bit integrato nel chip. La tesi affronta anche lo sviluppo e la caratterizzazione di una nuova matrice monolitica 2 × 4 di SDD di spessore pari a 1 mm, con un’area attiva di pixel di 8 × 8 mm2 , nell’ambito dell’esperimento SIDDHARTA-2. Tale esperimento mira ad approfondire la conoscenza delle interazioni nucleari forti. Inoltre, la tesi presenta lo sviluppo di un nuovo modulo di rivelazione basato su sugli stessi SDD, accoppiati con Charge Sensitive Amplifiers basati su tecnologia CMOS e disposti in una struttura impilata, con l’obiettivo di migliorare l’efficienza di rivelazione nell’intervallo energetico dei raggi X duri. Questa soluzione mira ad aumentare ulteriormente l’efficienza di assorbimento del sistema senza agire sullo spessore del substrato dell’SDD.
Development of readout electronics for innovative energy-dispersive X-ray detectors based on monolithic arrays of SDDs
Deda, Griseld
2023/2024
Abstract
The main goal of this thesis was the development and characterization of SCARLET (SDD-ASIC ARray for Large Event Throughput) Analog Pulse Processor (APP), a new high-density, multichannel X-ray detector for spectroscopic applications that can achieve both high energy resolution and high counting rate. The chip layout is compatible for bump-bonding assembly with 2 × 2, 2-mm pitch, monolithic arrays of Silicon Drift Detector (SDD), obtaining a so-called Hybrid Pixel Detector. This configuration comes with a set of challenges that need to be adressed. Reducing the pixel area of the detector can introduce challenges such as charge sharing. The adoption of flip-chip bump bonding technology introduces challenges like missing bonds, local shorts, temperature or lifetime reliability, verification procedures, and the presence of parasitic capacitance and resistance in the bump solder. Another critical challenge is the integration of the Charge Sensitive Amplifier (CSA) with the rest of the pulse processing electronics, which introduces mixed-signal issues. The ASIC development has been started from its predecessor, TERA (Throughput Enhanced Readout ASIC), designed in the same 0.35 μm CMOS technology node. Each channel includes the CSA, a 7th-order semi-Gaussian shaping amplifier with controllable shaping times and full scale ranges, followed by a peak stretcher and a switched capacitor analog-memory. Each channel is also equipped with a dedicated peak detector and a novel pile up rejection (PUR) logic. Each pair of channels is digitized by a 12-bit on-chip Successive-Approximation Register (SAR) ADC. The thesis also addresses the development and characterization of a new 1-mm thick 2×4 monolithic array of SDDs, with a pixel active area of 8×8 mm2, in the framework of SIDDHARTA-2 experiment. This experiment aims to deepen the knowledge of strong nuclear interactions. Moreover, the thesis presents the development of a novel detection module based on these SDDs, coupled with CMOS-based Charge Sensitive Amplifiers arranged in a stacked structure with the goal to enhance the detection efficiency in the hard X-ray range. This solution aims to further increase the absorption efficiency of the system without acting on the substrate thickness of the SDD.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_DEDA_final_version.pdf
non accessibile
Descrizione: Tesi PhD Deda
Dimensione
38.78 MB
Formato
Adobe PDF
|
38.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220793