Scanning electron microscopy (SEM) is a versatile experimental technique widely employed for characterizing the morphology of specimens. It offers nanometer lateral resolution, high surface sensitivity, compatibility with ultra-high vacuum environments, and suitability for analyzing bulky samples. These attributes position SEM as a valuable tool for investigating various devices, including those with dimensions spanning from micrometers to nanometers, such as mechanical, electronic, and photonic devices. In addition to providing characteristic contrast images of a sample's morphology, SEM can offer insights into charge arrangements and the potential they generate at surfaces. This is achieved by exploiting the sensitivity of secondary electrons (SE) to local electric fields. Combining SEM with specimen optical excitation expands the technique's capabilities, enabling the imaging of photo-induced structural modifications and damage, as well as out-of-equilibrium conditions such as charge transport, space charge accumulation, and photovoltages. Additionally, SEM can explore the dynamic response of a photo-induced sample by utilizing optical excitation as a trigger, leading to the development of a Time-Resolved SEM (TR-SEM) apparatus. The physical phenomena mentioned can evolve over a wide range of time scales, spanning from days to femtoseconds and even shorter. Consequently, different experimental approaches must be considered, considering the temporal regime characteristic of the phenomena being studied and the acquisition time of the experimental setup. A real-time approach is suitable for response timescales longer than the detector’s time response. This approach acquires images in a timeline following the optical excitation. On the other hand, a pump-probe approach is necessary for phenomena evolving on much shorter timescales, such as nanoseconds and picoseconds. This method utilizes a repeatable photo-induced excitation of the material, allowing for precise control and measurement of the dynamics on these fast timescales. In the presented work, a Time-Resolved SEM (TR-SEM) setup was developed and implemented to investigate surface mechanical and charge dynamics behavior in Micro-electro-mechanical systems (MEMS) and heavily doped Silicon, respectively. Imaging mechanical motion of MEMS at the nanoscale was investigated by time-resolved scanning electron microscopy as the first application. Reconfigurable micro-optics and on-chip integrated photonics frequently utilize micro-opto-electromechanical systems (MOEMS) to enable dynamic optical processing functionalities like beam steering, focusing, optical coupling, and phase tuning. During the design and fabrication of microelectron-mechanical systems (MEMS), as well as for assessing their quality, it is highly beneficial to have a method for locally and directly measuring their motion on a point-by-point basis. The technique must be sufficiently fast to track the dynamics of MEMS with sub-micron resolution. Here, we introduce and discuss the implementation of dynamical imaging of MEMS using time-resolved scanning electron microscopy (SEM). MEMS resonators are often actuated close to their resonance frequencies. We demonstrate how to obtain stroboscopic movies by employing a sequential acquisition of the secondary electron signal. Unprecedented information about the local trajectory is provided at a microsecond scale and a lateral scale of tens of nanometers. In-operando nonlinearities in the system's response, which can be interpreted as related to system hardening, are brought to light. Additionally, strategies to achieve the ultrafast time scale are discussed. The second application uses the capability of photo-assisted ultrafast scanning electron microscopy (USEM) in time-resolved mode to study the dynamical imaging of local photovoltage at semiconductor surfaces especially highly p-type boron-doped Silicon (1 × 1019 dopants cm−3). Ultrafast Scanning Electron Microscopy (USEM) is utilized to map the dynamics of surface photovoltages and local electric fields in semiconducting samples. Photovoltages and their gradients near the surface influence the emission yield and detection efficiency of secondary electrons (SE), resulting in the formation of photo-excited SE 2D patterns. We introduced a method to characterize the evolution of these patterns up to the ultrafast regime. Our findings unveil the influence of surface states on the dynamics of external fields at picosecond timescales. Additionally, we demonstrate that subtle variations in surface preparation result in significantly different photoexcited voltage signals. Furthermore, we explore the relationship between the surface chemistry of silicon and the contrast observed in photo-induced secondary electron patterns. The USEM contrast is markedly influenced by the chemical state resulting from the preparation of the Si (001) surface. Varying HF etching times can even result in a reversal of the USEM contrast pattern. By correlating USEM with Auger electron Microspectroscopy on samples prepared under different conditions, we underscore the significant impact of surface chemistry on photovoltages and charge dynamics at the Si (001) surface. This, in turn, profoundly influences the value of the work function and the transport of charge carriers at the surface, resulting in varying photovoltages and potentially even their reversal in sign.
La microscopia elettronica a scansione (SEM) è una tecnica sperimentale versatile ampiamente utilizzata per caratterizzare la morfologia dei campioni. Offre risoluzione laterale nanometrica, elevata sensibilità superficiale, compatibilità con ambienti a vuoto ultraelevato e idoneità per l'analisi di campioni voluminosi. Questi attributi posizionano il SEM come uno strumento prezioso per indagare vari dispositivi, compresi quelli con dimensioni che vanno dai micrometri ai nanometri, come dispositivi meccanici, elettronici e fotonici. Oltre a fornire immagini di contrasto caratteristiche della morfologia di un campione, il SEM può offrire approfondimenti sulle disposizioni delle cariche e sul potenziale che generano sulle superfici. Ciò si ottiene sfruttando la sensibilità degli elettroni secondari (SE) ai campi elettrici locali. La combinazione del SEM con l'eccitazione ottica del campione espande le capacità della tecnica, consentendo l'imaging di modifiche e danni strutturali fotoindotti, nonché di condizioni fuori equilibrio come trasporto di carica, accumulo di carica spaziale e fotovoltaggi. Inoltre, il SEM può esplorare la risposta dinamica di un campione fotoindotto utilizzando l'eccitazione ottica come trigger, portando allo sviluppo di un apparato SEM risolto nel tempo (TR-SEM). I fenomeni fisici menzionati possono evolversi su un ampio intervallo di scale temporali, che vanno dai giorni ai femtosecondi e anche più brevi. Di conseguenza, devono essere considerati diversi approcci sperimentali, considerando il regime temporale caratteristico dei fenomeni studiati e il tempo di acquisizione del setup sperimentale. Un approccio in tempo reale è adatto per tempi di risposta più lunghi del tempo di risposta del rilevatore. Questo approccio acquisisce immagini in una sequenza temporale che segue l'eccitazione ottica. D’altra parte, un approccio pump-probe è necessario per fenomeni che si evolvono su scale temporali molto più brevi, come nanosecondi e picosecondi. Questo metodo utilizza un'eccitazione fotoindotta ripetibile del materiale, consentendo un controllo e una misurazione precisi della dinamica su queste scale temporali rapide. Nel lavoro presentato, è stata sviluppata e implementata una configurazione SEM risolta nel tempo (TR-SEM) per studiare il comportamento meccanico superficiale e dinamico della carica rispettivamente nei sistemi microelettromeccanici (MEMS) e nel silicio fortemente drogato. L'imaging del movimento meccanico dei MEMS su scala nanometrica è stato studiato mediante microscopia elettronica a scansione risolta nel tempo come prima applicazione. La microottica riconfigurabile e la fotonica integrata su chip utilizzano spesso sistemi microoptoelettromeccanici (MOEMS) per abilitare funzionalità di elaborazione ottica dinamica come l'orientamento del raggio, la messa a fuoco, l'accoppiamento ottico e la regolazione della fase. Durante la progettazione e la fabbricazione di sistemi microelettromeccanici (MEMS), nonché per la valutazione della loro qualità, è estremamente vantaggioso disporre di un metodo per misurare localmente e direttamente il loro movimento punto per punto. La tecnica deve essere sufficientemente veloce per tracciare la dinamica dei MEMS con risoluzione inferiore al micron. Qui presentiamo e discutiamo l'implementazione dell'imaging dinamico dei MEMS utilizzando la microscopia elettronica a scansione risolta in tempo (SEM). I risonatori MEMS vengono spesso attivati vicino alle loro frequenze di risonanza. Dimostriamo come ottenere filmati stroboscopici impiegando un'acquisizione sequenziale del segnale dell'elettrone secondario. Informazioni senza precedenti sulla traiettoria locale vengono fornite su scala di microsecondi e su scala laterale di decine di nanometri. Vengono messe in luce le non linearità in-operando nella risposta del sistema, che possono essere interpretate come correlate all'irrigidimento del sistema. Inoltre, vengono discusse le strategie per raggiungere la scala temporale ultraveloce. La seconda applicazione utilizza la capacità della microscopia elettronica a scansione ultraveloce fotoassistita (USEM) in modalità risolta in tempo per studiare l'immagine dinamica della fototensione locale sulle superfici dei semiconduttori, in particolare il silicio drogato con boro di tipo p (1 × 10 19 droganti cm - 3 ). La microscopia elettronica a scansione ultraveloce (USEM) viene utilizzata per mappare la dinamica delle fotovoltaggi superficiali e dei campi elettrici locali nei campioni semiconduttori. Le fotovoltaggi e i loro gradienti vicino alla superficie influenzano la resa di emissione e l'efficienza di rilevamento degli elettroni secondari (SE), determinando la formazione di modelli SE 2D fotoeccitati. Abbiamo introdotto un metodo per caratterizzare l'evoluzione di questi modelli fino al regime ultraveloce. I nostri risultati svelano l’influenza degli stati superficiali sulla dinamica dei campi esterni su scale temporali di picosecondi. Inoltre, dimostriamo che sottili variazioni nella preparazione della superficie determinano segnali di tensione fotoeccitati significativamente diversi. Inoltre, esploriamo la relazione tra la chimica superficiale del silicio e il contrasto osservato nei modelli di elettroni secondari fotoindotti. Il contrasto USEM è marcatamente influenzato dallo stato chimico risultante dalla preparazione della superficie di Si (001). Tempi di attacco HF variabili possono addirittura provocare un'inversione del modello di contrasto USEM. Correlando l'USEM con la microspettroscopia elettronica Auger su campioni preparati in diverse condizioni, sottolineiamo l'impatto significativo della chimica superficiale sulle fotovoltaggi e sulla dinamica della carica sulla superficie del Si (001). Ciò, a sua volta, influenza profondamente il valore della funzione lavoro e il trasporto dei portatori di carica in superficie, determinando fotovoltaggi variabili e potenzialmente anche la loro inversione di segno.
Time-resolved scanning electron microscope for investigation of mechanical and charge dynamics
Zaghloul, Mohamed
2023/2024
Abstract
Scanning electron microscopy (SEM) is a versatile experimental technique widely employed for characterizing the morphology of specimens. It offers nanometer lateral resolution, high surface sensitivity, compatibility with ultra-high vacuum environments, and suitability for analyzing bulky samples. These attributes position SEM as a valuable tool for investigating various devices, including those with dimensions spanning from micrometers to nanometers, such as mechanical, electronic, and photonic devices. In addition to providing characteristic contrast images of a sample's morphology, SEM can offer insights into charge arrangements and the potential they generate at surfaces. This is achieved by exploiting the sensitivity of secondary electrons (SE) to local electric fields. Combining SEM with specimen optical excitation expands the technique's capabilities, enabling the imaging of photo-induced structural modifications and damage, as well as out-of-equilibrium conditions such as charge transport, space charge accumulation, and photovoltages. Additionally, SEM can explore the dynamic response of a photo-induced sample by utilizing optical excitation as a trigger, leading to the development of a Time-Resolved SEM (TR-SEM) apparatus. The physical phenomena mentioned can evolve over a wide range of time scales, spanning from days to femtoseconds and even shorter. Consequently, different experimental approaches must be considered, considering the temporal regime characteristic of the phenomena being studied and the acquisition time of the experimental setup. A real-time approach is suitable for response timescales longer than the detector’s time response. This approach acquires images in a timeline following the optical excitation. On the other hand, a pump-probe approach is necessary for phenomena evolving on much shorter timescales, such as nanoseconds and picoseconds. This method utilizes a repeatable photo-induced excitation of the material, allowing for precise control and measurement of the dynamics on these fast timescales. In the presented work, a Time-Resolved SEM (TR-SEM) setup was developed and implemented to investigate surface mechanical and charge dynamics behavior in Micro-electro-mechanical systems (MEMS) and heavily doped Silicon, respectively. Imaging mechanical motion of MEMS at the nanoscale was investigated by time-resolved scanning electron microscopy as the first application. Reconfigurable micro-optics and on-chip integrated photonics frequently utilize micro-opto-electromechanical systems (MOEMS) to enable dynamic optical processing functionalities like beam steering, focusing, optical coupling, and phase tuning. During the design and fabrication of microelectron-mechanical systems (MEMS), as well as for assessing their quality, it is highly beneficial to have a method for locally and directly measuring their motion on a point-by-point basis. The technique must be sufficiently fast to track the dynamics of MEMS with sub-micron resolution. Here, we introduce and discuss the implementation of dynamical imaging of MEMS using time-resolved scanning electron microscopy (SEM). MEMS resonators are often actuated close to their resonance frequencies. We demonstrate how to obtain stroboscopic movies by employing a sequential acquisition of the secondary electron signal. Unprecedented information about the local trajectory is provided at a microsecond scale and a lateral scale of tens of nanometers. In-operando nonlinearities in the system's response, which can be interpreted as related to system hardening, are brought to light. Additionally, strategies to achieve the ultrafast time scale are discussed. The second application uses the capability of photo-assisted ultrafast scanning electron microscopy (USEM) in time-resolved mode to study the dynamical imaging of local photovoltage at semiconductor surfaces especially highly p-type boron-doped Silicon (1 × 1019 dopants cm−3). Ultrafast Scanning Electron Microscopy (USEM) is utilized to map the dynamics of surface photovoltages and local electric fields in semiconducting samples. Photovoltages and their gradients near the surface influence the emission yield and detection efficiency of secondary electrons (SE), resulting in the formation of photo-excited SE 2D patterns. We introduced a method to characterize the evolution of these patterns up to the ultrafast regime. Our findings unveil the influence of surface states on the dynamics of external fields at picosecond timescales. Additionally, we demonstrate that subtle variations in surface preparation result in significantly different photoexcited voltage signals. Furthermore, we explore the relationship between the surface chemistry of silicon and the contrast observed in photo-induced secondary electron patterns. The USEM contrast is markedly influenced by the chemical state resulting from the preparation of the Si (001) surface. Varying HF etching times can even result in a reversal of the USEM contrast pattern. By correlating USEM with Auger electron Microspectroscopy on samples prepared under different conditions, we underscore the significant impact of surface chemistry on photovoltages and charge dynamics at the Si (001) surface. This, in turn, profoundly influences the value of the work function and the transport of charge carriers at the surface, resulting in varying photovoltages and potentially even their reversal in sign.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
solo utenti autorizzati a partire dal 04/05/2027
Descrizione: Time-resolved scanning electron microscopy for investigation of mechanical and charge dynamics
Dimensione
7.1 MB
Formato
Adobe PDF
|
7.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220812