In cell physiology, the term “redox homeostasis” refers to the balance between oxidizing and reducing agents and is recognized as a core concept governing the entire cell cycle. Recent advances have shown that redox reactions play a crucial role in cellular health and several pathological conditions can be linked to imbalanced and altered redox states. This has led to the emergence of the “redox medicine” field, whose principles are laying the foundation for novel therapeutic strategies addressing a broad spectrum of health issues. From a biochemical point of view, the maintenance of redox homeostasis in cells is correlated to the intracellular concentration of Reactive Oxygen Species (ROS), derivatives of molecular oxygen acting as secondary messengers. The term ROS includes both free radical and non-radical oxygen intermediates. Examples include singlet oxygen, hydroxyl radical and superoxide anion as free radicals, and hydrogen peroxide as a non radical. The role of ROS in pathophysiology appears to be highly pleiotropic and strictly dependent on their intracellular concentration. Modulation of ROS levels has a dual impact on intracellular signalling: their balance towards a positive, oxidative eustress can trigger physiological processes, whereas a shift towards oxidative distress levels may have detrimental effects. Therefore, the ability to fine-tune the intracellular ROS levels has then the potential to control diverse biomolecular pathways, such as calcium dynamics and nitric oxide levels, ultimately affecting the regulation of specific cellular functions, in both physiological and pathological conditions. Novel tools able to finely regulate intracellular ROS balance within the desired concentration range are therefore highly desired. These tools should exhibit minimal invasiveness, high selectivity, spatial resolution at or below the micrometer scale, temporal selectivity at or below the millisecond scale, and ideally offer partial reversibility. In this PhD Thesis, we exploit the advantages of light as a tool to modulate the intracellular ROS balance. Optical stimulation represents a promising solution able to satisfy all the aforementioned criteria. To efficiently transduce the optical signal, we rely on exogenous light transducer materials, specifically on conjugated polymers such as Poly(3-hexylthiophene) (P3HT). Previous works have shown that the energetic levels of photo-excited P3HT align well with the reduction potential of molecular oxygen towards superoxide radical anion. This allows to produce ROS on demand, modulating cell activity in a controlled, optically-induced manner. Throughout this work, we employ the photoactive materials in two forms, affecting the way we interface with cells: polymer thin films, used as cell culturing substrates, and polymer nanoparticles (NPs), which internalize within the cell cytosol. Polymer thin films represent a useful and simple testbench to test different materials and to promptly characterize cell/material interfaces. On the other way round, polymer NPs offer distinct advantages, i.e.: they are prone to chemical functionalization for maximizing photoelectrochemical efficiency and/or enabling selective cell targeting, and the use of different NPs concentrations provides a further parameter to tune ROS balance on demand, towards eustress or distress conditions. Furthermore, NPs are also more attractive for in-vivo applications, since they can be injected and delivered to the site of interest, without the need for surgical implantation. The aim of this work is to broaden the toolkit of materials available as phototransducers, obtaining higher photoelectrochemical efficiencies with respect to P3HT thin films, taken as a benchmark material. The results obtained in this PhD Thesis represent an important step forward in the development of new tools for precise, non-invasive, geneless and wireless modulation of intracellular ROS. In more detail, we focus on the cardiovascular field, where redox medicine is expected to play a crucial role. Importantly, we demonstrate the possibility to optically modulate the redox balance by fully biocompatible conjugated polymers in different cardiovascular cell models, and we achieve control on cardiovascular in-vitro cell functions, thus laying the foundations for an unprecedented therapeutic approach. Overall, the experimental results presented in this Thesis hold promise to establish new biotechnological tools at the forefront of a new branch of medicine, that we can now name “photo-redox” medicine.
In fisiologia cellulare, il termine “redox homeostasis”, “omeostasi di ossidoriduzione”, si riferisce all’equilibrio tra agenti ossidanti e riducenti ed è ritenuto uno dei concetti cardine per il ciclo cellulare. Recenti sviluppi hanno mostrato come le reazioni ossidoriduttive giochino un ruolo cruciale nella salute cellulare e come diverse condizioni patologiche possono essere collegate a squilibri e alterazioni negli stati ossidoriduttivi. Questo ha portato allo sviluppo della “redox medicine”, la “medicina di ossidoriduzione”, i cui principi stanno portando alla creazione di terapie innovative per affrontare svariati problemi di salute. Dal punto di vista biochimico, il mantenimento dell’omeostasi di ossidoriduzione nelle cellule è legato alla concentrazione intracellulare delle “Reactive Oxygen Species” (ROS), ovvero derivati dell’ossigeno molecolare che agiscono da messaggeri secondari. Il termine ROS comprende forme intermedie dell’ossigeno sia in forma di radicali liberi sia di non-radicali: esempi di radicali liberi sono il singoletto di ossigeno, il radicale ossidrile e l’anione superossido, mentre un non-radicale è il perossido di idrogeno. Il ruolo delle ROS in fisiopatologia risulta essere altamente pleiotropico e fortemente legato alla loro concentrazione intracellulare. La modulazione dei livelli di ROS nelle cellule ha un duplice impatto sulla segnalazione intracellulare: un loro spostamento verso un eustress (i.e. uno stress “positivo”) ossidativo può attivare processi fisiologici, mentre verso un distress (i.e. uno stress “negativo”) può avere effetti dannosi. Dunque, la capacità di controllare i livelli di ROS intracellulare offre la possibilità di intervenire su diversi “pathways” biomolecolari, come le dinamiche di calcio e i livelli di ossido nitrico, influenzando infine la regolazione di specifiche funzioni cellulari, sia in condizioni fisiologiche che patologiche. È quindi desiderabile impiegare nuovi strumenti in grado di regolare le concentrazioni di ROS intracellulari entro le concentrazioni necessarie. Questi strumenti devono essere minimamente invasivi, altamente selettivi, possedere risoluzione spaziale nel range della scala sub-micrometrica, avere selettività temporale nel range della scala dei millisecondi e, idealmente, offrire parziale reversibilità. In questa Tesi di Dottorato, sfruttiamo i vantaggi della luce come strumento per modulare l’equilibrio intracellulare delle ROS. Per trasformare in maniera efficiente i segnali ottici, utilizziamo materiali esogeni che svolgono il ruolo di foto-trasduttori, in particolare polimeri coniugati come il Poly(3-hexylthiophene) (P3HT). Lavori antecedenti hanno mostrato che i livelli energetici del P3HT fotoeccitato si allineano con il potenziale di riduzione dell’ossigeno molecolare verso il radicale anione superossido. Ciò garantisce la possibilità di generare ROS “su richiesta”, modulando le attività cellulari in maniera otticamente indotta. In questo lavoro, impieghiamo i materiali fotoattivi in due forme, che cambiano anche il modo in cui ci interfacciamo con la sostanza biologica: film polimerici sottili, che agiscono da substrato per le cellule, e nanoparticelle (NPs) polimeriche, che internalizzano direttamente nel citosol cellulare. Le NPs presentano alcuni vantaggi: la loro struttura può essere ingegnerizzata nel dettaglio, la conseguente produzione di ROS può essere regolata con precisione e ottimizzata semplicemente cambiandone la concentrazione, e il loro uso è più affine alle applicazioni in-vivo dato che possono essere iniettate nel punto di interesse senza richiedere operazioni chirurgiche. Lo scopo di questo lavoro è ampliare la scelta in termini di materiali fototrasduttivi disponibili migliorando in termini di efficienza fotoelettrochimica rispetto al P3HT, che consideriamo materiale di riferimento. I risultati di questa tesi di Dottorato rappresentano un importante passo in avanti nello sviluppo di nuovi strumenti per la modulazione precisa, non invasiva, wireless e senza geni, delle ROS intracellulari. Avendo come obiettivo applicazioni nel contesto della medicina di ossidoriduzione in ambito cardiovascolare, dimostriamo la possibilità di sfruttare la modulazione dell’equilibrio ossidoriduttivo per promettenti approcci terapeutici in-vivo. Questa Tesi di Dottorato, dunque, punta a comprendere ulteriormente queste nuove prospettive terapeutiche basate su materiali fotoattivi. I risultati sperimentali ottenuti hanno un potenziale promettente in un ramo all’avanguardia della medicina, che ora possiamo chiamare “photo-redox medicine”, “medicina di ossidoriduzione mediata dalla luce”.
Organic Polymers for Geneless, Optical Modulation of Intracellular Redox Balance in Cardiovascular Cells
Marzuoli, Camilla
2023/2024
Abstract
In cell physiology, the term “redox homeostasis” refers to the balance between oxidizing and reducing agents and is recognized as a core concept governing the entire cell cycle. Recent advances have shown that redox reactions play a crucial role in cellular health and several pathological conditions can be linked to imbalanced and altered redox states. This has led to the emergence of the “redox medicine” field, whose principles are laying the foundation for novel therapeutic strategies addressing a broad spectrum of health issues. From a biochemical point of view, the maintenance of redox homeostasis in cells is correlated to the intracellular concentration of Reactive Oxygen Species (ROS), derivatives of molecular oxygen acting as secondary messengers. The term ROS includes both free radical and non-radical oxygen intermediates. Examples include singlet oxygen, hydroxyl radical and superoxide anion as free radicals, and hydrogen peroxide as a non radical. The role of ROS in pathophysiology appears to be highly pleiotropic and strictly dependent on their intracellular concentration. Modulation of ROS levels has a dual impact on intracellular signalling: their balance towards a positive, oxidative eustress can trigger physiological processes, whereas a shift towards oxidative distress levels may have detrimental effects. Therefore, the ability to fine-tune the intracellular ROS levels has then the potential to control diverse biomolecular pathways, such as calcium dynamics and nitric oxide levels, ultimately affecting the regulation of specific cellular functions, in both physiological and pathological conditions. Novel tools able to finely regulate intracellular ROS balance within the desired concentration range are therefore highly desired. These tools should exhibit minimal invasiveness, high selectivity, spatial resolution at or below the micrometer scale, temporal selectivity at or below the millisecond scale, and ideally offer partial reversibility. In this PhD Thesis, we exploit the advantages of light as a tool to modulate the intracellular ROS balance. Optical stimulation represents a promising solution able to satisfy all the aforementioned criteria. To efficiently transduce the optical signal, we rely on exogenous light transducer materials, specifically on conjugated polymers such as Poly(3-hexylthiophene) (P3HT). Previous works have shown that the energetic levels of photo-excited P3HT align well with the reduction potential of molecular oxygen towards superoxide radical anion. This allows to produce ROS on demand, modulating cell activity in a controlled, optically-induced manner. Throughout this work, we employ the photoactive materials in two forms, affecting the way we interface with cells: polymer thin films, used as cell culturing substrates, and polymer nanoparticles (NPs), which internalize within the cell cytosol. Polymer thin films represent a useful and simple testbench to test different materials and to promptly characterize cell/material interfaces. On the other way round, polymer NPs offer distinct advantages, i.e.: they are prone to chemical functionalization for maximizing photoelectrochemical efficiency and/or enabling selective cell targeting, and the use of different NPs concentrations provides a further parameter to tune ROS balance on demand, towards eustress or distress conditions. Furthermore, NPs are also more attractive for in-vivo applications, since they can be injected and delivered to the site of interest, without the need for surgical implantation. The aim of this work is to broaden the toolkit of materials available as phototransducers, obtaining higher photoelectrochemical efficiencies with respect to P3HT thin films, taken as a benchmark material. The results obtained in this PhD Thesis represent an important step forward in the development of new tools for precise, non-invasive, geneless and wireless modulation of intracellular ROS. In more detail, we focus on the cardiovascular field, where redox medicine is expected to play a crucial role. Importantly, we demonstrate the possibility to optically modulate the redox balance by fully biocompatible conjugated polymers in different cardiovascular cell models, and we achieve control on cardiovascular in-vitro cell functions, thus laying the foundations for an unprecedented therapeutic approach. Overall, the experimental results presented in this Thesis hold promise to establish new biotechnological tools at the forefront of a new branch of medicine, that we can now name “photo-redox” medicine.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Marzuoli Camilla.pdf
non accessibile
Descrizione: PhD Thesis Marzuoli Camilla
Dimensione
52.32 MB
Formato
Adobe PDF
|
52.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/220874