After decades of space debris build-up affecting the near-Earth environment in the guise of high-speed fragments, defunct satellites from past space missions alongside dissemi- nated clutter from anti-satellite tests, the once empty space around our planet is now teetering on the brink of discomfort due to excessive congestion. The situation is poised to exacerbate significantly with the rise of mega-constellations. Besides, given the current limitations, both space agencies and private companies are increasingly looking to leverage the Cislunar regime for future spaceborne infrastructure. In this setting, Space Situational Awareness (SSA) embraces a prominent responsibility to delineate guidelines to preserve current space assets and possibly avoid the congestion of future gateways to the Cislunar realm. Among the considered countermeasures, the development of effective Collision Avoidance Maneuver (CAM) strategies is emerging as a global top priority. Given this premise, this thesis addresses the imperative need for CAMs to mitigate the risks associated with high-speed debris in Earth’s vicinity and partly in the Cislunar space. The work thoroughly covers evasive policies for short-term encounters and, to a minor extent, copes with long-term conjunctions with additional mission-related requirements. The initial part of the dissertation concentrates on analytical and semi-analytical CAM routines. Grounded in foundational concepts such as collision probability models and dynamical formulations, the dissertation spans impulsive and low-thrust Energy-Optimal (EO) CAM designs. Operational challenges are addressed by combining CAM with additional goals, such as achieving specific final states and performing Station-Keeping (SK) routines. The transition from ground-based planning to autonomous decision-making by satellites is emphasized for computational efficiency. To effectively mirror the functionality of low-thrust engines, increasingly integrated into upcoming satellite propulsion systems, it is crucial to offer solutions that transform impulsive and EO CAMs into Fuel-Optimal (FO) ones. This adaptation is vital for optimizing operational scenarios. Part of this work is then dedicated to reshaping an EO into a FO one having computational time in mind. Despite short-term encounters being fairly common, some conjunctions occur over a longer time window such as in Geostationary orbit (GEO), where the involved objects may have small relative velocities. The theoretical investigation, therefore, introduces convex optimization approaches for long-term CAM and SK in this regime. While lacking an analytical formulation, this section enables per-node CAM and stochastic SK, ensuring satellite adherence to an assigned GEO slot with a given probability. The thesis is structured into two main sections: the first dedicated to analytical and semi-analytical CAMs, and the second exploring convex CAM and SK. Each chapter contributes to the overarching goal of achieving precise and efficient solutions for space debris management and collision avoidance.
Dopo decenni di accumulo di detriti spaziali che hanno influenzato l’ambiente vicino alla Terra sotto forma di frammenti ad alta velocità, satelliti fuori servizio appartenenti a mis- sioni spaziali passate insieme a detriti disseminati da test anti-satellite, lo spazio una volta vuoto intorno al nostro pianeta è ora sull’orlo del sovraffollamento a causa dell’eccessiva congestione. La situazione è destinata a peggiorare significativamente con l’aumento delle mega-costellazioni. Inoltre, date le limitazioni attuali, sia le agenzie spaziali che le aziende private stanno sempre più cercando di sfruttare il regime cislunare per le future infras- trutture spaziali. In questo contesto, la Space Situational Awareness (SSA) assume una responsabilità rilevante nel delineare linee guida per preservare gli attuali assets e possibilmente evitare la congestione della regione cislunare. Tra le contromisure considerate, lo sviluppo di strategie efficaci di Collision Avoidance Maneuver (CAM) sta emergendo come una priorità globale. Data questa premessa, questa tesi affronta l’imperativa necessità di CAM per mitigare i rischi associati ai detriti ad alta velocità nelle vicinanze della Terra e, in parte, nello spazio cislunare. Il lavoro copre in modo approfondito le politiche evasive per incontri a breve termine e, in misura minore, affronta congiunzioni a lungo termine con requisiti addizionali legati alla missione. La prima parte della tesi si concentra su routine analitiche e semi-analitiche di CAM. Basata su concetti fondamentali come modelli di probabilità di collisione e formulazioni dinamiche, si spazia tra la progettazione di CAM impulsive ed a bassa spinta Energy- Optimal (EO). Le sfide operative sono affrontate combinando CAM con obiettivi aggiun- tivi, come raggiungere stati finali specifici e svolgere routine di Station-Keeping (SK). La transizione dalla pianificazione a terra alla decisione autonoma a bordo dei satelliti è enfatizzata dall’ efficienza computazionale. Per rispecchiare efficacemente la funzionalità dei motori a bassa spinta, sempre più in- tegrati nei futuri sistemi di propulsione satellitare, è cruciale offrire soluzioni che trasformino le CAM impulsive e EO in Fuel-Optimal (FO). Questa adattamento è vitale per ottimiz- zare gli scenari operativi. Parte di questo lavoro è quindi dedicata a rimodellare un EO in un FO tenendo conto del tempo computazionale. Nonostante gli incontri a breve termine siano abbastanza comuni, alcune collisioni avvengono su una finestra temporale più lunga, come in Geostationary orbit (GEO), dove gli oggetti coinvolti possono avere piccole velocità relative. L’indagine teorica introduce quindi approcci di ottimizzazione convessa per CAM e SK a lungo termine in questo regime. Pur mancando di una formulazione analitica, questa sezione consente CAM per ogni nodo temporale e SK stocastico, garantendo l’aderenza del satellite ad uno slot GEO assegnato con una data probabilità. La tesi è strutturata in due sezioni principali: la prima dedicata alle CAM analitiche e semi-analitiche, e la seconda che esplora CAM e SK convesse. Ogni capitolo contribuisce all’obiettivo generale di ottenere soluzioni precise ed efficienti per la gestione dei detriti spaziali e l’evitamento delle collisioni
Enhanced collision avoidance strategies in the near-Earth environment
De Vittori, Andrea
2023/2024
Abstract
After decades of space debris build-up affecting the near-Earth environment in the guise of high-speed fragments, defunct satellites from past space missions alongside dissemi- nated clutter from anti-satellite tests, the once empty space around our planet is now teetering on the brink of discomfort due to excessive congestion. The situation is poised to exacerbate significantly with the rise of mega-constellations. Besides, given the current limitations, both space agencies and private companies are increasingly looking to leverage the Cislunar regime for future spaceborne infrastructure. In this setting, Space Situational Awareness (SSA) embraces a prominent responsibility to delineate guidelines to preserve current space assets and possibly avoid the congestion of future gateways to the Cislunar realm. Among the considered countermeasures, the development of effective Collision Avoidance Maneuver (CAM) strategies is emerging as a global top priority. Given this premise, this thesis addresses the imperative need for CAMs to mitigate the risks associated with high-speed debris in Earth’s vicinity and partly in the Cislunar space. The work thoroughly covers evasive policies for short-term encounters and, to a minor extent, copes with long-term conjunctions with additional mission-related requirements. The initial part of the dissertation concentrates on analytical and semi-analytical CAM routines. Grounded in foundational concepts such as collision probability models and dynamical formulations, the dissertation spans impulsive and low-thrust Energy-Optimal (EO) CAM designs. Operational challenges are addressed by combining CAM with additional goals, such as achieving specific final states and performing Station-Keeping (SK) routines. The transition from ground-based planning to autonomous decision-making by satellites is emphasized for computational efficiency. To effectively mirror the functionality of low-thrust engines, increasingly integrated into upcoming satellite propulsion systems, it is crucial to offer solutions that transform impulsive and EO CAMs into Fuel-Optimal (FO) ones. This adaptation is vital for optimizing operational scenarios. Part of this work is then dedicated to reshaping an EO into a FO one having computational time in mind. Despite short-term encounters being fairly common, some conjunctions occur over a longer time window such as in Geostationary orbit (GEO), where the involved objects may have small relative velocities. The theoretical investigation, therefore, introduces convex optimization approaches for long-term CAM and SK in this regime. While lacking an analytical formulation, this section enables per-node CAM and stochastic SK, ensuring satellite adherence to an assigned GEO slot with a given probability. The thesis is structured into two main sections: the first dedicated to analytical and semi-analytical CAMs, and the second exploring convex CAM and SK. Each chapter contributes to the overarching goal of achieving precise and efficient solutions for space debris management and collision avoidance.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Andrea_De_Vittori_final_delivery.pdf
accessibile in internet per tutti a partire dal 24/05/2027
Dimensione
21.58 MB
Formato
Adobe PDF
|
21.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/221512