Concrete is one of the most widely used construction materials due to its mechanical properties, ease of installation, cost-effectiveness, and versatility in shaping, which can also enhance architectural aesthetics if needed. However, it also exhibits weaknesses, notably its low tensile strength, necessitating in many cases the incorporation of steel reinforcing bars, and susceptibility to cracking, attributable to factors like early age shrinkage and loading conditions. These weaknesses may compromise its durability: corrosion products from steel (and related expansion phenomena) and cracks formation, not only impact the mechanical performance of the material, but also create pathways for harmful substances from the external environment. In this framework, it must be also considered that, with a growing global population, the demand for housing and infrastructures is increasing, leading to higher concrete consumption in the near future. Furthermore, concrete holds a significant place in our global heritage and carries intrinsic identity value, particularly within certain architectural styles: as an example, brutalist architecture, popularized since the 1950’s (with Le Corbusier among its foremost proponents) is characterized by the use of fair-faced concrete. All these factors highlight the imperative for developing innovative cement-based materials that surpass the performance and durability of traditional ones. These materials are essential not only for new construction projects but also for retrofitting existing structures. In general, they should embrace the concept of "less is more", leveraging their high performance not only to minimize maintenance needs but also to reduce the dimensions of structural elements thanks to their enhanced capabilities, thereby reducing the amount of needed raw materials. These materials must also meet the emerging market demands, tailored to a greater awareness of the environmental implications of the construction sector at every level: local, regional, and global. This results in a growing demand for more sustainable materials, encompassing a holistic sustainability perspective that includes environmental, economic and social ramifications. This research aims to shed light on the imperative need of choosing the most proper material to achieve both structural and sustainability goals, adopting an “a priori” approach, integrating Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) into the structural design phase to support the decision making process. The first attempt to apply a life cycle thinking to assess the environmental performance of a product, dates back to the late 1960’s. However, these methodologies are nowadays standardized by international standards ISO 14040 and ISO 14044 and largely employed in the field of construction to improve the efficiency of the entire supply-chain. Despite the extensive literature available on traditional cement-based materials, data on advanced construction materials remains scarce. Typically, such data are limited to the production stage, often lacking estimations of material performance over time and at a large scale application. A first part of this work is then directed to a deep analysis of the state of the art in the specific field, with a focus on the methodologies to be employed and on the main challenges to be addressed, like lack of data regarding the usage and end-of-life phases when novel materials are implemented on a structural scale. Here, the introduction of durability assessment-oriented design methodology becomes pivotal. This approach aims to maximize the longevity and resilience of structures against degradation mechanisms by integrating durability considerations early in the design process. By anticipating potential degradation mechanisms and tailoring structural solutions accordingly, the performance of structures can be enhanced throughout their lifecycle. The overarching goal is to minimize the need for maintenance and repairs over time, indirectly benefiting both LCA and LCC outcomes. However, the effectiveness of this approach is based on the availability of comprehensive data, which poses a significant challenge, particularly for novel materials, due to their lack. To this purpose, experiments and data collection, especially regarding durability when exposed to aggressive environments, have been carried out for certain of these materials assessed within the framework of the SMARTINCS project (or other related ones as ISAP and RESHEALIENCE). Thus, concrete including superabsorbent polymers (SAP) or, alternatively, containing CEM III and crystalline admixture (CA), have been assessed to create a data library to serve as one of the key exploitable results of this research, for future durability estimations. More specifically, chlorides migration and diffusion tests have been carried out for uncracked SAP-based concrete and concrete with CEM III + CA and also in the cracked state for concrete with CEM III + CA . Chloride diffusion tests have been carried out at the age of 6 and 12 months, by submerging specimens in a solution with 33 g/l of sodium chloride. Moreover, for CEM III + CA concrete, natural carbonation has been tested for specimens exposed to open air at the age of 6 and 12 months. The study delves then into various case studies, from the microscopic scale to large-scale applications. Microcapsules and alumina nanofibers are examined for their potential to enhance self-healing performance. For the microcapsules, the scaled production process through membrane emulsification, is assessed. In this process, capsules are formed from an oilin-water emulsion (the oil phase of which is a dispersion of a low viscosity alkoxysilane water repellent agent and isophorone diisocyanate) followed by polyurethane shell formation. This part of the study has been performed together with Claire Riordan, ESR 2 of the SMARTINCS project. Still employing a microscopic perspective, the concentrated alumina nanofiber dispersions are examined. This type of product, developed by NAFENTM, is provided in a 10% concentration aqueous suspension. Alumina nanofibers, like the ones analyzed here (with diameters spanning from 4-11 nm and lengths from 100-900 nm), offer potential benefits in ultra-high performance concrete (UHPC). They facilitate stress redistribution in the cracked state, creating narrow cracks. Coupled with their hydrophilic characteristics, these fibers encourage delayed binder hydration reactions, thereby enhancing and expediting recovery in both crack sealing and mechanical properties following material cracking. For both the microcapsules and the 10% dispersion of alumina nanofibers, environmental sustainability has been quantified and presented using the EPD (Environmental Product Declaration) 2018 methodology. This is aimed at providing a proof that these materials can be commercially viable and competitive in the market, since EPD is a document usually required to ensure that environmental claims are based on consistent and reliable information. The study moves then to a macroscopic scale, where the utilization of a 3Dprinted vascular network embedded into a concrete beam, exposed to a chloride environment, has been analyzed. Additionally, use of concrete with SAPs in building walls as part of tunnel elements, as well as the application of UHPC and Recycled-UHPC (with traditional or recycled aggregates respectively) for constructing a basin containing geothermal water, are examined. Extremely aggressive scenarios are assessed, such as chloride environment and acid attack (XS and XA exposure classes according to the Eurocode). Research involving the 3D printing of vascular networks was conducted in collaboration with Yasmina Shields and Vanessa Giaretton Cappellesso (ESRs 1 and 11 of the SMARTINCS project), whereas the part concerning R-UHPC was undertaken alongside Niranjan Prabhu (ESR10). The research then continues with the examination of the performance resulting from the use of higher-performing materials for a strategic structure such as the wastewater treatment plant (one of the largest in Europe), located in Genoa, Italy. The latter has been partly constructed through the use of concrete with CA and it is subjected to carbonation and chloride attack. This is further aimed at better understanding the social implications for the entire community arising from the use of advanced construction materials. All the case studies herein addressed highlighted consistent advantages in the use of advanced construction materials compared to more traditional solutions. This applies to both environmental and economic sustainability. For instance, the integration of a 3D printed Nylon/PLA vascular networks embedded into the concrete matrix, coupled with the injection of healing agents upon occurrence of cracks, yielded reductions of up to 50% in ecological impacts and costs. Concrete with Superabsorbent Polymers showcased environmental impact reductions of up to 67% and improvements of up to 22% in economic assessments, mainly attributed to the significantly enhanced durability and consequent reduction in maintenance activities. Similarly, UHPC demonstrated benefits of up to 63% in environmental assessments and 46% in economic assessments, while Recycled-UHPC, incorporating 100% recycled aggregates, was observed to generate reductions of 50% and 33% respectively. In a comparable way, concrete containing CEM III + Crystalline Admixture (CA) exhibited reductions of up to 40% concerning environmental ramifications when subjected to carbonation as main degradation phenomenon. However, effectively communicating the advantages of advanced cementbased materials (or other specific materials) over alternatives, due to their enhanced overall sustainability, can pose a challenge. To address this challenge and facilitate a clear communication, particularly to interested stakeholders, the study delves then into the development of sustainability indices. These indices, to be used either on a material scale or on a structural scale, consider a series of material performance aspects such as durability, mechanical parameters, as well as LCA and LCC outcomes. Aim is to offer a more streamlined and efficient method of communicating sustainability by providing one unique numerical value. As mentioned, while LCA and LCC methodologies are not new in the realm of sustainability, the scope of this work extends beyond their conventional use to demonstrate their role in shaping the future trajectory of the construction industry. Synergistically integrated into a performanceoriented structural design, these methodologies signify a transition from mere evaluation tools to decision-support tools, aiming at shaping an ecoresilient construction sector.
Il calcestruzzo è uno dei materiali da costruzione più utilizzati grazie alle sue proprietà meccaniche, alla facilità di installazione, al costo contenuto e alla sua versatilità nell’acquisire le forme piu` svariate. Tuttavia, la sua bassa resistenza alla trazione, (che richiede l'incorporazione di barre di armatura in acciaio), e la suscettibilità alle fessurazioni rappresentano sicuramente una debolezza che ne inficia la durabilita`. I prodotti della corrosione dell’acciaio (e i relativi fenomeni di espansione) non solo influiscono sulle prestazioni meccaniche del materiale, ma favoriscono anche l’ingresso di agenti aggressivi provenienti dall’ambiente esterno. Bisogna inoltre osservare che, con la crescita della popolazione mondiale, la domanda di abitazioni e infrastrutture è in aumento, generando quindi, nel prossimo futuro, consumi di calcestruzzo sempre crescenti. Quest’ultimo e` inoltre un materiale che puo` portare con sé un valore identitario intrinseco, in particolare all'interno di alcuni stilemi architettonici: ad esempio, l'architettura brutalista, resa popolare a partire dagli anni '50 (con Le Corbusier tra i suoi principali esponenti) è identificata con l’utilizzo di calcestruzzo a faccia vista. Quanto sopra evidenzia la necessita` di sviluppare materiali cementizi innovativi piu` performanti, con piu` elevate prestazioni di durabilita` rispetto a quelli tradizionali, da utilizzarsi non solo per le nuove costruzioni ma anche per la manutenzione di quelle esistenti. Tali materiali dovranno impiegarsi non solo perche’ possano ridurre al minimo le esigenze di manutenzione attraverso le loro elevate prestazioni, ma anche perche` le loro proprieta` meccaniche possano consentire di ridurre le dimensioni degli elementi strutturali, riducendo, quindi, la quantità di materie prime necessarie. Oltre a questo, dovranno anche soddisfare le richieste di un mercato sempre piu` sensibile alla sostenibilita` ambientale del settore delle costruzioni a ogni livello: locale, regionale e globale. In quest’ottica, questo lavoro di ricerca mira a fornire una metodologia per identificare il materiale più adeguato al raggiungimento di obiettivi sia strutturali che di sostenibilità olistica, integrando le metodologie Life Cycle Assessment (LCA) e Life Cycle Costing (LCC) con la progettazione strutturale. La prima analisi a ciclo di vita per valutare la prestazione ambientale di un prodotto (LCA) risale alla fine degli anni '60. Tuttavia, queste metodologie sono oggi standardizzate dalle norme internazionali ISO 14040 e ISO 14044 e ampiamente utilizzate nel campo delle costruzioni per migliorare l’efficienza dell’intera supply-chain. Nonostante, l’ampia letteratura disponibile sui materiali tradizionali a base di cemento, i dati sui materiali da costruzione avanzati rimangono scarsi e in genere limitati alla fase di produzione, spesso mancando di stime delle prestazioni degli stessi nel tempo e su un'applicazione su larga scala. Una prima parte di questo lavoro è quindi incentrata su un'analisi approfondita dello stato dell'arte nel campo delle valutazioni di sostenibilita`, con un focus sulle metodologie da impiegare e sulle principali sfide da superare, quali la mancanza di dati riguardanti le fasi di utilizzo e di fine vita. Questo, soprattutto per strutture realizzate con materiali di nuova tecnologia. Qui, l’introduzione di una metodologia di progettazione basata sulla valutazione della durabilità assume un ruolo cruciale. Quest’ultima, infatti, mira a massimizzare longevità e resilienza delle strutture, integrando considerazioni sulla durabilità nelle prime fasi del processo di progettazione. Pertanto, i meccanismi di degrado vengono analizzati gia` nella fase progettuale, adattando di conseguenza le soluzioni strutturali con lo scopo di ridurre al minimo la necessità di manutenzione nel tempo, con benefici diretti sia per l’LCA che per l’analisi LCC. Tuttavia, l’efficacia di questo approccio si basa sulla disponibilità di dati che, come detto prima, soprattutto per i materiali di nuova generazione, rappresentano una sfida significativa, in quanto spesso mancanti. A questo scopo, per alcuni dei materiali valutati nell'ambito del progetto SMARTINCS (o di altri progetti correlati come iSAP e ReSHEALiencE), sono stati condotti esperimenti al fine di raccogliere dati, in particolare riguardo alla durabilità quando esposti ad ambienti aggressivi. Pertanto, calcestruzzo contenente polimeri superassorbenti (SAPs) o, in alternativa, contenente CEM III e additivo cristallino (CA), sono stati analizzati al fine di realizzare una libreria di dati che, di fatto, rappresenta uno dei primi expolitable results di questa ricerca. Più nel dettaglio, sono state effettuate prove di migrazione e diffusione dei cloruri per calcestruzzi non fessurati contenenti SAPs e per calcestruzzi con CEM III+CA (per quest’ultimi anche allo stato fessurato). Le prove di diffusione dei cloruri sono state effettuate immergendo i campioni in una soluzione con 33 g/l di cloruro di sodio per 6 e 12 mesi. Inoltre, per il calcestruzzo CEM III + CA, e` stata testata anche la carbonatazione naturale su provini esposti all'aria aperta per un periodo di 6 e 12 mesi. La ricerca approfondisce poi diversi casi studio, dalla scala microscopica alle applicazioni su larga scala. In prima istanza sono state studiate le microcapsule e le nanofibre di allumina (addizionate al calcestruzzo per il loro potenziale di migliorare le prestazioni di autoriparazione). Per le microcapsule e` stato valutato il processo di produzione in larga scala tramite “membrane emulsification”. In questo processo, le capsule vengono formate da un'emulsione olio in acqua (la cui fase oleosa è una dispersione di un agente idrorepellente alcossisilano a bassa viscosità e isoforone diisocianato) seguita dalla formazione dell’involucro di poliuretano. Questa parte dello studio è stata svolta assieme a Claire Riordan, ESR 2 del progetto SMARTINCS. Sempre in una prospettiva microscopica, sono state esaminate le nanofibre di allumina in dispersione acquosa. Questo tipo di prodotto, sviluppato da NAFENTM , viene fornito in sospensione acquosa con concentrazione al 10%. Le nanofibre di allumina, come quelle analizzate qui (con diametri che vanno da 4-11 nm e lunghezze da 100-900 nm), offrono potenziali vantaggi nel calcestruzzo ad altissime prestazioni (Ultra-High performance concrete). Facilitano la ridistribuzione delle tensioni nello stato fessurato e, insieme alle loro caratteristiche idrofile, favoriscono reazioni ritardate di idratazione del legante, migliorando e accelerando così sia la sigillatura delle crepe che il recupero nelle proprietà meccaniche. Sia per le microcapsule che per la dispersione al 10% di nanofibre di allumina, la sostenibilità ambientale è stata quantificata utilizzando, per presentare i risultati dell’analisi LCA, la metodologia EPD (Dichiarazione Ambientale di Prodotto) 2018 con lo scopo di fornire una prova che questi materiali possono essere competitivi sul mercato e pronti per essere commercializzati. Lo studio si concentra poi su scala macroscopica, dove è stato analizzato l’utilizzo di una rete vascolare stampata in 3D incorporata in una trave di calcestruzzo, esposta ad un ambiente ricco in cloruri. Successivamente, viene esaminato l'uso del calcestruzzo con SAPs per realizzare muri, anch’essi esposti ad attacco di cloruri, nonché l'applicazione di UHPC e Recycled-UHPC (rispettivamente con aggregati tradizionali o riciclati) per la costruzione di una vasca contenente acqua geotermica. In genere, sono valutati scenari estremamente aggressivi, come ambiente ricco di cloruri o caratterizzato da attacco acido (classi di esposizione XS e XA secondo l'Eurocodice). La ricerca sulla stampa 3D delle reti vascolari è stata condotta in collaborazione con Yasmina Shields e Vanessa Giaretton Cappellesso (rispettivamente ESR 1 e 11 del progetto SMARTINCS), mentre la parte riguardante R-UHPC è stata svolta in sinergia con Niranjan Prabhu (ESR10). Lo studio ha, inoltre, valutato le prestazioni di una struttura strategica come l’impianto di depurazione (uno dei più grandi d'Europa) situato a Genova, in Italia. Quest'ultimo è stato in parte realizzato mediante l'utilizzo di calcestruzzo con additivo cristallino ed è sottoposto all'attacco della carbonatazione e dei cloruri. L'obiettivo, per questo caso, e` stato quello di comprendere meglio le implicazioni sociali per l'intera comunità derivanti dall'uso di materiali da costruzione avanzati che possano comportare una maggiore durabilita` della struttura. Tutti i casi studio citati hanno evidenziato vantaggi consistenti nell’uso di materiali da costruzione avanzati rispetto a soluzioni più tradizionali. Ciò vale sia in termini di sostenibilità ambientale che economica. Ad esempio, l’integrazione di reti vascolari in nylon/PLA stampate in 3D ed incorporate nel calcestruzzo (per la successiva iniezione di agenti atti a favorire la chiusura delle fessure), ha prodotto riduzioni fino al 50% degli impatti ecologici e dei costi. Il calcestruzzo con polimeri superassorbenti ha mostrato riduzioni degli impatti ambientali fino al 67% e miglioramenti fino al 22% nelle valutazioni economiche, attribuiti principalmente alla durabilità significativamente migliorata e alla conseguente riduzione delle attività di manutenzione. Allo stesso modo, l’UHPC ha dimostrato benefici fino al 63% nelle valutazioni ambientali e del 46% in quelle economiche, mentre l’UHPC che incorpora il 100% di aggregati riciclati, ha generato riduzioni rispettivamente del 50% e del 33%. In modo analogo, il calcestruzzo contenente CEM III + additivo cristallino ha mostrato riduzioni fino al 40% per alcuni indicatori di impatto ambientale quando soggetto alla carbonatazione come principale fenomeno di degrado. Tuttavia, comunicare in modo efficace i vantaggi derivanti della pronunciata sostenibilità dei materiali avanzati a base di cemento (o di un materiale in genere) rispetto alle alternative, può rappresentare una sfida. Per facilitare una comunicazione chiara ed efficace verso gli stakeholders interessati, lo studio approfondisce poi lo sviluppo di indici di sostenibilità. Questi indici, da utilizzarsi sia sulla scala del materiale (ad esempio, il m3) che su scala strutturale, includono parametri prestazionali dei materiali come la durabilità, i parametri meccanici, nonché i risultati derivanti dalle analisi LCA e LCC. L'obiettivo è offrire un metodo efficiente per comunicare la sostenibilità fornendo un unico valore numerico. Come accennato, sebbene le metodologie LCA e LCC non siano nuove nel campo della sostenibilità, questo lavoro va oltre il loro uso convenzionale per dimostrando la loro capacita` nell’influenzare il futuro del settore delle costruzioni. Integrate sinergicamente in una progettazione strutturale basata sulle prestazioni, questa ricerca propone una metodologia olistica in cui, da meri strumenti di valutazione divengono strumenti di supporto alle decisioni, con l’obiettivo di creare un settore delle costruzioni eco-resiliente.
Synergistic integration of life cycle assessment and life cycle costing for a performance-oriented structural design with advanced cement-based materials
di SUMMA, DAVIDE
2023/2024
Abstract
Concrete is one of the most widely used construction materials due to its mechanical properties, ease of installation, cost-effectiveness, and versatility in shaping, which can also enhance architectural aesthetics if needed. However, it also exhibits weaknesses, notably its low tensile strength, necessitating in many cases the incorporation of steel reinforcing bars, and susceptibility to cracking, attributable to factors like early age shrinkage and loading conditions. These weaknesses may compromise its durability: corrosion products from steel (and related expansion phenomena) and cracks formation, not only impact the mechanical performance of the material, but also create pathways for harmful substances from the external environment. In this framework, it must be also considered that, with a growing global population, the demand for housing and infrastructures is increasing, leading to higher concrete consumption in the near future. Furthermore, concrete holds a significant place in our global heritage and carries intrinsic identity value, particularly within certain architectural styles: as an example, brutalist architecture, popularized since the 1950’s (with Le Corbusier among its foremost proponents) is characterized by the use of fair-faced concrete. All these factors highlight the imperative for developing innovative cement-based materials that surpass the performance and durability of traditional ones. These materials are essential not only for new construction projects but also for retrofitting existing structures. In general, they should embrace the concept of "less is more", leveraging their high performance not only to minimize maintenance needs but also to reduce the dimensions of structural elements thanks to their enhanced capabilities, thereby reducing the amount of needed raw materials. These materials must also meet the emerging market demands, tailored to a greater awareness of the environmental implications of the construction sector at every level: local, regional, and global. This results in a growing demand for more sustainable materials, encompassing a holistic sustainability perspective that includes environmental, economic and social ramifications. This research aims to shed light on the imperative need of choosing the most proper material to achieve both structural and sustainability goals, adopting an “a priori” approach, integrating Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) into the structural design phase to support the decision making process. The first attempt to apply a life cycle thinking to assess the environmental performance of a product, dates back to the late 1960’s. However, these methodologies are nowadays standardized by international standards ISO 14040 and ISO 14044 and largely employed in the field of construction to improve the efficiency of the entire supply-chain. Despite the extensive literature available on traditional cement-based materials, data on advanced construction materials remains scarce. Typically, such data are limited to the production stage, often lacking estimations of material performance over time and at a large scale application. A first part of this work is then directed to a deep analysis of the state of the art in the specific field, with a focus on the methodologies to be employed and on the main challenges to be addressed, like lack of data regarding the usage and end-of-life phases when novel materials are implemented on a structural scale. Here, the introduction of durability assessment-oriented design methodology becomes pivotal. This approach aims to maximize the longevity and resilience of structures against degradation mechanisms by integrating durability considerations early in the design process. By anticipating potential degradation mechanisms and tailoring structural solutions accordingly, the performance of structures can be enhanced throughout their lifecycle. The overarching goal is to minimize the need for maintenance and repairs over time, indirectly benefiting both LCA and LCC outcomes. However, the effectiveness of this approach is based on the availability of comprehensive data, which poses a significant challenge, particularly for novel materials, due to their lack. To this purpose, experiments and data collection, especially regarding durability when exposed to aggressive environments, have been carried out for certain of these materials assessed within the framework of the SMARTINCS project (or other related ones as ISAP and RESHEALIENCE). Thus, concrete including superabsorbent polymers (SAP) or, alternatively, containing CEM III and crystalline admixture (CA), have been assessed to create a data library to serve as one of the key exploitable results of this research, for future durability estimations. More specifically, chlorides migration and diffusion tests have been carried out for uncracked SAP-based concrete and concrete with CEM III + CA and also in the cracked state for concrete with CEM III + CA . Chloride diffusion tests have been carried out at the age of 6 and 12 months, by submerging specimens in a solution with 33 g/l of sodium chloride. Moreover, for CEM III + CA concrete, natural carbonation has been tested for specimens exposed to open air at the age of 6 and 12 months. The study delves then into various case studies, from the microscopic scale to large-scale applications. Microcapsules and alumina nanofibers are examined for their potential to enhance self-healing performance. For the microcapsules, the scaled production process through membrane emulsification, is assessed. In this process, capsules are formed from an oilin-water emulsion (the oil phase of which is a dispersion of a low viscosity alkoxysilane water repellent agent and isophorone diisocyanate) followed by polyurethane shell formation. This part of the study has been performed together with Claire Riordan, ESR 2 of the SMARTINCS project. Still employing a microscopic perspective, the concentrated alumina nanofiber dispersions are examined. This type of product, developed by NAFENTM, is provided in a 10% concentration aqueous suspension. Alumina nanofibers, like the ones analyzed here (with diameters spanning from 4-11 nm and lengths from 100-900 nm), offer potential benefits in ultra-high performance concrete (UHPC). They facilitate stress redistribution in the cracked state, creating narrow cracks. Coupled with their hydrophilic characteristics, these fibers encourage delayed binder hydration reactions, thereby enhancing and expediting recovery in both crack sealing and mechanical properties following material cracking. For both the microcapsules and the 10% dispersion of alumina nanofibers, environmental sustainability has been quantified and presented using the EPD (Environmental Product Declaration) 2018 methodology. This is aimed at providing a proof that these materials can be commercially viable and competitive in the market, since EPD is a document usually required to ensure that environmental claims are based on consistent and reliable information. The study moves then to a macroscopic scale, where the utilization of a 3Dprinted vascular network embedded into a concrete beam, exposed to a chloride environment, has been analyzed. Additionally, use of concrete with SAPs in building walls as part of tunnel elements, as well as the application of UHPC and Recycled-UHPC (with traditional or recycled aggregates respectively) for constructing a basin containing geothermal water, are examined. Extremely aggressive scenarios are assessed, such as chloride environment and acid attack (XS and XA exposure classes according to the Eurocode). Research involving the 3D printing of vascular networks was conducted in collaboration with Yasmina Shields and Vanessa Giaretton Cappellesso (ESRs 1 and 11 of the SMARTINCS project), whereas the part concerning R-UHPC was undertaken alongside Niranjan Prabhu (ESR10). The research then continues with the examination of the performance resulting from the use of higher-performing materials for a strategic structure such as the wastewater treatment plant (one of the largest in Europe), located in Genoa, Italy. The latter has been partly constructed through the use of concrete with CA and it is subjected to carbonation and chloride attack. This is further aimed at better understanding the social implications for the entire community arising from the use of advanced construction materials. All the case studies herein addressed highlighted consistent advantages in the use of advanced construction materials compared to more traditional solutions. This applies to both environmental and economic sustainability. For instance, the integration of a 3D printed Nylon/PLA vascular networks embedded into the concrete matrix, coupled with the injection of healing agents upon occurrence of cracks, yielded reductions of up to 50% in ecological impacts and costs. Concrete with Superabsorbent Polymers showcased environmental impact reductions of up to 67% and improvements of up to 22% in economic assessments, mainly attributed to the significantly enhanced durability and consequent reduction in maintenance activities. Similarly, UHPC demonstrated benefits of up to 63% in environmental assessments and 46% in economic assessments, while Recycled-UHPC, incorporating 100% recycled aggregates, was observed to generate reductions of 50% and 33% respectively. In a comparable way, concrete containing CEM III + Crystalline Admixture (CA) exhibited reductions of up to 40% concerning environmental ramifications when subjected to carbonation as main degradation phenomenon. However, effectively communicating the advantages of advanced cementbased materials (or other specific materials) over alternatives, due to their enhanced overall sustainability, can pose a challenge. To address this challenge and facilitate a clear communication, particularly to interested stakeholders, the study delves then into the development of sustainability indices. These indices, to be used either on a material scale or on a structural scale, consider a series of material performance aspects such as durability, mechanical parameters, as well as LCA and LCC outcomes. Aim is to offer a more streamlined and efficient method of communicating sustainability by providing one unique numerical value. As mentioned, while LCA and LCC methodologies are not new in the realm of sustainability, the scope of this work extends beyond their conventional use to demonstrate their role in shaping the future trajectory of the construction industry. Synergistically integrated into a performanceoriented structural design, these methodologies signify a transition from mere evaluation tools to decision-support tools, aiming at shaping an ecoresilient construction sector.File | Dimensione | Formato | |
---|---|---|---|
Doctoraat Davide.pdf
non accessibile
Dimensione
16.42 MB
Formato
Adobe PDF
|
16.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/221513