The study of the interaction between non-ionizing radiation and human tissues is of relevant importance in our days. Indeed, as Radio Frequency (RF) technologies develop rapidly, besides the advantages of improving the well-being of users, they pose the threat of emitting an increasing amount of electromagnetic fields (EMF) into the environment, raising possible concerns among the population. At the last time, one of the fields that undergone a rapid increase in the development of new RF technologies was the automotive field. Indeed, as more and more vehicles are circulating on roads, much research was focused on the evolution of a new paradigm called Vehicular Ad-Hoc Networks (VANET) for the development of vehicular communication technologies for the Intelligent Transport System (ITS) with the aim to manage traffic congestion better and, in general, to diminish car accidents. In this PhD dissertation the focus was given to Vehicle-to-Everything communication (V2X) technologies operating under the IEEE 802.11p protocol at 5.9 GHz, i.e., RF technologies for smart connected vehicles able to communicate with the surrounding elements, such as other vehicles, infrastructures, road users, and networks. These RF technologies spread most of the radiation field in the outdoor scenario; therefore, it is very urgent and important to assess, from a biomedical perspective, the dose of RF absorbed by people outside the transmitting cars, that is, road users, such as pedestrians. This type of evaluation is lacking in the current literature. The exposure scenario to be investigated is a complex one, first because there are many key factors that affect the RF exposure of a road user, and secondly, these key factors are highly variable in real urban scenarios. Just to give an idea, the most important factors are the relative position of the road user with respect to the vehicular communication antennas mounted on the transmitting vehicles, the positioning of the antennas on the vehicle, the different types of vehicular antennas, the anatomical characteristics of the road user (child vs. adult, for example), and the characteristics of the urban scenario (buildings, obstacles, trees and so on) as they have an impact on the way in which the RF field propagates from the vehicles and reaches the road user. This PhD work aimed to fill the gap in the literature about the missing data on the assessment of exposure due to V2X communication technologies in the outdoor vehicular scenario with a particular focus on the impact that the key factors could have on the dose absorbed by the road user. The investigation was performed by means of two different computational approaches, each specifically designed to tackle exposure assessment in two different scale range domains. More precisely, this PhD study addressed a small-scale range domain composed of just one transmitting vehicle and one road user at the closest distance to the car (i.e., within 1 m) and a large-scale range domain where RF exposure was investigated at longer distances (up to 90 m) taking into account factors such as the different types of V2X technologies and all the features that characterize the real urban scenario, such as buildings, roads, many vehicles like obstacles, trees and grass. Exposure in the small-scale range domain was investigated with numerical dosimetry by applying the Finite-Different Time Domain (FDTD) method. High-resolution image-based 3D human virtual models were used to represent the road user. Exposure assessment was investigated by varying the position of the road user near the transmitting vehicle and by considering human models of different anatomical characteristics (children, adults and a pregnant woman). The large-scale range domain was investigated with a Raytracing technique, exploiting Geometric Optics (GO) and Uniform Theory of Diffraction (UTD) to have a collection of rays that represent the E-field distribution in space. Using the E-field values thus obtained through Raytracing it was possible to obtain the dose of RF-EMF absorbed by the road user in a realistic urban vehicular scenario. The quantification of the exposure was performed through the parameter identified in the international regulations, i.e., the Specific Absorption Rate (SAR) which is the EMF power absorbed per unit mass [W/kg]. The study of factors influencing the exposure of the relative position of the pedestrian compared to the antennas mounted on the vehicle was performed placing the road users in five different positions around the vehicle in two different orientations; the variable factor due to the anatomy of the human models was faced with the use of different human models with different characteristics of age, gender and size; finally, the variable factor provided by the use of different V2X technologies in a realistic urban scenario was performed evaluating the exposure levels in a realistic vehicular urban scenario considering different exposure scenarios of increasing complexity. The results obtained in this PhD study are of relevant contribution to the scientific community in providing for the first time the exposure levels induced in road users by novel V2X communication technologies at 5.9 GHz. All the levels found were very low compared to the basic restriction of the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines for the exposure of the general public in the 100 kHz – 300 GHz range. Furthermore, this PhD study provided a precise quantification of the effects of each of the analyzed key factors on the exposure levels. More specifically it was found: i) which was the distance range within which the exposure to the road user was at its highest; ii) how the exposure varied with the anatomical characteristics of the road user, that is child vs. adult, child vs. fetus, adult vs. pregnant women; iii) what was the contribution to the road user exposure of the different types of communication antennas, that is the antennas on the vehicles vs the antennas on the infrastructure. Specifically, it was found that the road user received the maximum dose absorbed at a distance up to 11 m from a transmitting vehicle depending on the geometrical dimension of the human models and number of transmitting vehicles activated; vehicular infrastructure antennas generate almost negligible exposure levels compared to vehicular antennas mounted on vehicles.
Lo studio dell'interazione tra radiazioni non ionizzanti e tessuti umani è di rilevante importanza ai nostri giorni. Infatti, poiché le tecnologie a radiofrequenza (RF) si sviluppano rapidamente, oltre ai vantaggi di migliorare il benessere degli utenti, comportano il rischio di emettere una quantità crescente di campi elettromagnetici (EMF) nell’ambiente, sollevando possibili preoccupazioni tra la popolazione. Negli ultimi tempi, uno dei settori che ha subito un rapido incremento nello sviluppo di nuove tecnologie RF è stato quello automobilistico. Infatti, poiché sempre più veicoli circolano sulle strade, gran parte della ricerca si è concentrata sull'evoluzione di un nuovo paradigma chiamato Vehicular Ad-Hoc Networks (VANET) per lo sviluppo di tecnologie di comunicazione veicolare per il sistema di trasporto intelligente (ITS) con l'obiettivo gestire meglio la congestione del traffico e, in generale, diminuire gli incidenti stradali. In questa tesi di dottorato l'attenzione è stata data alle tecnologie di comunicazione Vehicle-to-Everything (V2X) che operano secondo il protocollo IEEE 802.11p a 5,9 GHz, ovvero tecnologie RF per veicoli connessi in modo intelligente in grado di comunicare con gli elementi circostanti, come altri veicoli, infrastrutture, utenti della strada e reti. Queste tecnologie RF diffondono la maggior parte del campo di radiazione vero l’esterno; pertanto, è molto urgente e importante valutare, da un punto di vista biomedico, la dose di RF assorbita dalle persone all’esterno delle auto trasmittenti, ovvero da utenti della strada, come i pedoni. Questo tipo di valutazione manca completamente nella letteratura attuale. Lo scenario di esposizione da indagare è complesso, in primo luogo perché esistono molti fattori chiave che influenzano l’esposizione alle radiofrequenze di un utente della strada e, in secondo luogo, questi fattori chiave sono altamente variabili negli scenari urbani reali. Giusto per dare un'idea, i fattori più importanti sono la posizione relativa dell’ utente della strada rispetto alle antenne di comunicazione veicolare montate sui veicoli trasmittenti, il posizionamento delle antenne sul veicolo, i diversi tipi di antenne veicolari, le caratteristiche anatomiche dell'utente della strada (per esempio bambino vs adulto), e la caratteristiche dello scenario urbano (edifici, ostacoli, alberi ecc.) in quanto hanno un impatto sul modo in cui il campo RF si propaga dai veicoli e raggiunge l'utente della strada. Questo lavoro di dottorato mira a colmare la lacuna presenti nella letteratura riguardo al dati mancanti sulla valutazione dell’esposizione dovuta alle tecnologie di comunicazione V2X nello scenario veicolare “outdoor” con un focus particolare sull’impatto che i fattori chiave potrebbero avere sulla dose assorbita dall’utente della strada. L'indagine è stata condotta mediante due diversi approcci computazionali, ciascuno specificatamente progettato per affrontare la valutazione dell'esposizione in due diversi domini di grandezza. Più precisamente, questo studio di dottorato ha affrontato un dominio su piccola scala composto da un solo veicolo trasmittente e un utente della strada alla distanza più vicina all'auto (cioè entro 1 m) e un dominio su larga scala in cui l'esposizione a RF è stata studiata a distanze più lunghe (fino a 90 m) tenendo conto di fattori come le diverse tipologie di tecnologie V2X e tutte le caratteristiche che caratterizzano lo scenario urbano reale, come edifici, strade, molti veicoli come ostacoli, alberi ed erba. L'esposizione nel dominio su piccola scala è stata studiata con dosimetria numerica applicando il metodo Finite-Different Time Domain (FDTD). Per rappresentare l'utente della strada sono stati utilizzati modelli virtuali umani 3D basati su immagini ad alta risoluzione. La valutazione dell'esposizione è stata studiata variando la posizione del pedone in prossimità del veicolo trasmittente e considerando modelli umani con caratteristiche anatomiche diverse (bambini, adulti e una donna in gravidanza). Il dominio a larga scala è stato studiato con una tecnica Raytracing, sfruttando l'ottica geometrica (GO) e la teoria uniforme della diffrazione (UTD) per avere una raccolta di raggi che rappresentano la distribuzione del campo E nello spazio. Utilizzando i valori di campo E così ottenuti tramite Raytracing è stato possibile ottenere la dose di RF-EMF assorbita dall'utente della strada in uno scenario veicolare urbano realistico. La quantificazione dell’esposizione è stata effettuata attraverso il parametro individuato dalla normativa internazionale, ovvero il tasso di assorbimento specifico (SAR) che è la potenza EMF assorbita per unità di massa [W/kg]. Lo studio dei fattori che influenzano l'esposizione della posizione relativa del pedone rispetto alle antenne montate sul veicolo è stato effettuato ponendo un pedone in cinque diverse posizioni attorno al veicolo in due diversi orientamenti; il fattore variabile dovuto all'anatomia dei modelli umani è stato affrontato con l'utilizzo di diversi modelli umani con diverse caratteristiche di età, sesso e taglia; infine, il fattore variabile fornito dall’uso di diverse tecnologie V2X in uno scenario urbano realistico è stato effettuato valutando i livelli di esposizione in uno scenario urbano veicolare realistico considerando diversi scenari espositivi di crescente complessità. I risultati ottenuti in questo studio di dottorato rappresentano un contributo rilevante alla comunità scientifica nel fornire per la prima volta i livelli di esposizione indotti negli utenti della strada dalle nuove tecnologie di comunicazione V2X a 5,9 GHz. Tutti i livelli riscontrati erano molto bassi rispetto alle restrizioni di base delle linee guida di protezione della Commissione internazionale sulle radiazioni non ionizzanti (ICNIRP) per l'esposizione del pubblico nella gamma 100 kHz – 300 GHz. Inoltre, questo studio di dottorato ha fornito una quantificazione precisa degli effetti di ciascuno dei fattori chiave analizzati sui livelli di esposizione. Più nel dettaglio è stato riscontrato: I) quale era l'intervallo di distanze entro il quale l'esposizione per il pedone era massima; ii) come varia l'esposizione al variare delle caratteristiche anatomiche dell'utente della strada, ovvero bambino vs adulto, bambino vs feto, adulto vs donna incinta; iii) quale è stato il contributo in termini di esposizione degli utenti della strada ai diversi tipi di antenne di comunicazione, ovvero le antenne sui veicoli rispetto alle antenne sulle infrastrutture. Nello specifico, è stato accertato che l'utente della strada ha ricevuto la dose massima assorbita ad una distanza fino a 11 m dal veicolo che trasmette in base alla dimensione geometrica dei modelli umani e del numero di veicoli trasmittenti attivati; le antenne per infrastrutture veicolari generano livelli di esposizione quasi trascurabili rispetto alle antenne veicolari montate sui veicoli.
Exposure to Radio Frequency Electromagnetic Fields generated by Intelligent Transport System Vehicular Communication technologies
Benini, Martina
2023/2024
Abstract
The study of the interaction between non-ionizing radiation and human tissues is of relevant importance in our days. Indeed, as Radio Frequency (RF) technologies develop rapidly, besides the advantages of improving the well-being of users, they pose the threat of emitting an increasing amount of electromagnetic fields (EMF) into the environment, raising possible concerns among the population. At the last time, one of the fields that undergone a rapid increase in the development of new RF technologies was the automotive field. Indeed, as more and more vehicles are circulating on roads, much research was focused on the evolution of a new paradigm called Vehicular Ad-Hoc Networks (VANET) for the development of vehicular communication technologies for the Intelligent Transport System (ITS) with the aim to manage traffic congestion better and, in general, to diminish car accidents. In this PhD dissertation the focus was given to Vehicle-to-Everything communication (V2X) technologies operating under the IEEE 802.11p protocol at 5.9 GHz, i.e., RF technologies for smart connected vehicles able to communicate with the surrounding elements, such as other vehicles, infrastructures, road users, and networks. These RF technologies spread most of the radiation field in the outdoor scenario; therefore, it is very urgent and important to assess, from a biomedical perspective, the dose of RF absorbed by people outside the transmitting cars, that is, road users, such as pedestrians. This type of evaluation is lacking in the current literature. The exposure scenario to be investigated is a complex one, first because there are many key factors that affect the RF exposure of a road user, and secondly, these key factors are highly variable in real urban scenarios. Just to give an idea, the most important factors are the relative position of the road user with respect to the vehicular communication antennas mounted on the transmitting vehicles, the positioning of the antennas on the vehicle, the different types of vehicular antennas, the anatomical characteristics of the road user (child vs. adult, for example), and the characteristics of the urban scenario (buildings, obstacles, trees and so on) as they have an impact on the way in which the RF field propagates from the vehicles and reaches the road user. This PhD work aimed to fill the gap in the literature about the missing data on the assessment of exposure due to V2X communication technologies in the outdoor vehicular scenario with a particular focus on the impact that the key factors could have on the dose absorbed by the road user. The investigation was performed by means of two different computational approaches, each specifically designed to tackle exposure assessment in two different scale range domains. More precisely, this PhD study addressed a small-scale range domain composed of just one transmitting vehicle and one road user at the closest distance to the car (i.e., within 1 m) and a large-scale range domain where RF exposure was investigated at longer distances (up to 90 m) taking into account factors such as the different types of V2X technologies and all the features that characterize the real urban scenario, such as buildings, roads, many vehicles like obstacles, trees and grass. Exposure in the small-scale range domain was investigated with numerical dosimetry by applying the Finite-Different Time Domain (FDTD) method. High-resolution image-based 3D human virtual models were used to represent the road user. Exposure assessment was investigated by varying the position of the road user near the transmitting vehicle and by considering human models of different anatomical characteristics (children, adults and a pregnant woman). The large-scale range domain was investigated with a Raytracing technique, exploiting Geometric Optics (GO) and Uniform Theory of Diffraction (UTD) to have a collection of rays that represent the E-field distribution in space. Using the E-field values thus obtained through Raytracing it was possible to obtain the dose of RF-EMF absorbed by the road user in a realistic urban vehicular scenario. The quantification of the exposure was performed through the parameter identified in the international regulations, i.e., the Specific Absorption Rate (SAR) which is the EMF power absorbed per unit mass [W/kg]. The study of factors influencing the exposure of the relative position of the pedestrian compared to the antennas mounted on the vehicle was performed placing the road users in five different positions around the vehicle in two different orientations; the variable factor due to the anatomy of the human models was faced with the use of different human models with different characteristics of age, gender and size; finally, the variable factor provided by the use of different V2X technologies in a realistic urban scenario was performed evaluating the exposure levels in a realistic vehicular urban scenario considering different exposure scenarios of increasing complexity. The results obtained in this PhD study are of relevant contribution to the scientific community in providing for the first time the exposure levels induced in road users by novel V2X communication technologies at 5.9 GHz. All the levels found were very low compared to the basic restriction of the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines for the exposure of the general public in the 100 kHz – 300 GHz range. Furthermore, this PhD study provided a precise quantification of the effects of each of the analyzed key factors on the exposure levels. More specifically it was found: i) which was the distance range within which the exposure to the road user was at its highest; ii) how the exposure varied with the anatomical characteristics of the road user, that is child vs. adult, child vs. fetus, adult vs. pregnant women; iii) what was the contribution to the road user exposure of the different types of communication antennas, that is the antennas on the vehicles vs the antennas on the infrastructure. Specifically, it was found that the road user received the maximum dose absorbed at a distance up to 11 m from a transmitting vehicle depending on the geometrical dimension of the human models and number of transmitting vehicles activated; vehicular infrastructure antennas generate almost negligible exposure levels compared to vehicular antennas mounted on vehicles.File | Dimensione | Formato | |
---|---|---|---|
TESI DOTTORATO_FINALE_BENINI.pdf
accessibile in internet per tutti a partire dal 07/06/2025
Dimensione
11.02 MB
Formato
Adobe PDF
|
11.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/221874