The present work focuses on the study of the damage tolerance of a C/SiC composite produced by Liquid Silicon Infiltration, and of a ZrB2-based UHTCMC, produced by Spark Plasma Sintering. Their possible use for hot structural applications is a current issue for the design of the next generation of reusable space vehicles. An in-depth knowledge of nonlinear behavior, damage mechanisms, and residual strength of the two materials is mandatory to define those allowable values, which are the basis of a damage tolerant design approach. This work presents an extensive basic characterization of the materials, including tensile, bending, and interlaminar tests. UHTCMC showed extraordinary nonlinearity and plastic deformations, with a peculiar stiffness recovery effect. Nonlinearities were observed in C/SiC testing too, particularly relevant in off-axis direction. Interlaminar testing of C/SiC showed a considerable interlaminar fracture toughness with an R-curve effect, a sign of the presence of a process zone. A physical and analytical interpretation of the nonlinearities observed was then proposed, linking them to the evolution of the damage present in the matrix and/or the interface between the matrix and the fibers, caused by the severe Residual Thermal Stresses, developed during the manufacture. A bi-phasic Finite Element (FE) model is developed, implementing this analytical formulation, and generalizing it in the three-dimensional case. A constitutive law for the matrix phase was defined and implemented in a custom material subroutine. It is based on Drucker-Prager plasticity and Continuum Damage Mechanics (CDM), considering the effect of the biaxial thermal stress, which develops in cross-ply layups. Thereafter, a homogenized constitutive law based on a pressure-dependent Hill’s plasticity and CDM was defined, numerically implemented in a material subroutine, calibrated for the two materials, and partially validated by using the available experimental tests. Further investigations and validation of the models were then specifically conducted for the peculiar features of the two materials, considering their technology readiness levels. For the C/SiC CMC, a methodological protocol was proposed to deal with damages induced by low-energy impacts, their detectability, and the assessment of the retained properties. Impact tests were performed on C/SiC panels and CT scan analyses were performed showing the presence of multiple delaminations in the impact area. The effectiveness of Compression After Impact (CAI) test and flexural test in the assessment of residual strength of the impacted specimens was evaluated. CAI showed to have limits in correlating the impact energy with the compressive residual strength, related to the intrinsic compression resistance of CMCs. Contrarily, flexural tests turned out to be an effective method, showing that a hardly detectable damage can cause a considerable reduction of flexural strength. A preliminary numerical model, implementing the previously calibrated homogenized constitutive law, showed the importance of delaminations in capturing the impact resistance od C/SiC. In parallel, further investigations were conducted to improve the insight and the predictive capability referred to the highly nonlinear response of UHTCMC. The effects of biaxial stress on the flexural strength of UHTCMC were investigated through ring-on-ring tests on disk-shaped specimens, which resulted in the tensile failure of the specimens followed by multiple and extended delamination. To interpret the results, the test was numerically modeled using the previously defined model, including a Cohesive Zone Modelling (CZM), suggesting a considerable reduction of flexural strength in presence of biaxial stress state, and showing the poor interlaminar properties of the material.
Il presente lavoro si concentra sullo studio della tolleranza al danno di un composito C/SiC prodotto tramite Liquid Silicon Infiltration e di un UHTCMC a base di ZrB2, prodotto mediante Spark Plasma Sintering. Il loro possibile utilizzo per applicazioni strutturali ad alte temperature è una questione cruciale per la progettazione della prossima generazione di veicoli spaziali riutilizzabili. Una conoscenza approfondita del comportamento non lineare, dei meccanismi di danneggiamento e della resistenza residua dei due materiali è fondamentale per definire i valori ammissibili che sono alla base di un approccio di progettazione tollerante al danno. Questo lavoro presenta un'ampia caratterizzazione di base dei materiali, includendo prove di trazione, flessione e prove interlaminari. L'UHTCMC ha mostrato una notevole non linearità e deformazioni plastiche, con un peculiare effetto di recupero della rigidezza. Anche nei test sul C/SiC sono state osservate non linearità, particolarmente rilevanti nelle direzioni off-axis. Le prove interlaminari sul C/SiC hanno mostrato una notevole tenacità alla frattura interlaminare con un effetto R-curve, segno della presenza di una zona di processo. È stata quindi proposta un'interpretazione fisica e analitica delle non linearità osservate, collegandole all'evoluzione del danno presente nella matrice e/o all'interfaccia tra matrice e fibre, causato dai severi stress termici residui sviluppatisi durante la produzione. È stato sviluppato un modello agli elementi finiti (FE) bifasico, implementando questa formulazione analitica e generalizzandola nel caso tridimensionale. È stata definita e implementata una legge costitutiva per la fase della matrice in una subroutine di materiale personalizzata. Questa si basa sulla plasticità di Drucker-Prager e sulla Continuum Damage Mechanics (CDM), considerando l'effetto dello stress termico biassiale, che si sviluppa nei layup cross-ply. Successivamente, è stata definita una legge costitutiva omogeneizzata basata su una plasticità di Hill dipendente dalla pressione e sulla CDM, implementata numericamente in una subroutine di materiale, calibrata per i due materiali e parzialmente validata utilizzando i test sperimentali disponibili. Ulteriori indagini e validazioni dei modelli sono state poi condotte specificamente per le caratteristiche peculiari dei due materiali, considerando i loro livelli di sviluppo tecnologico. Per il CMC C/SiC è stato proposto uno studio metodologico per affrontare i danni indotti da impatti a bassa energia, la loro rilevabilità e la stima delle proprietà residue. Sono stati effettuati test di impatto su pannelli di C/SiC e analisi di CT scan, mostrando la presenza di molteplici delaminazioni nell'area di impatto. È stata valutata l'efficacia del test Compression After Impact (CAI) e del test di flessione nella valutazione della resistenza residua dei campioni impattati. Il CAI ha mostrato limiti nel correlare l'energia d'impatto con la resistenza residua a compressione, legati alla resistenza intrinseca alla compressione dei CMC. Al contrario, i test di flessione si sono rivelati un metodo efficace, mostrando che un danno difficilmente rilevabile può causare una notevole riduzione della resistenza alla flessione. Un modello numerico preliminare, implementando la legge costitutiva omogeneizzata precedentemente calibrata, ha mostrato l'importanza delle delaminazioni nel catturare la resistenza agli impatti del C/SiC. Parallelamente, sono state condotte ulteriori indagini per migliorare la comprensione e la capacità predittiva riferita alla risposta altamente non lineare dell'UHTCMC. Gli effetti dello stress biassiale sulla resistenza alla flessione dell'UHTCMC sono stati indagati attraverso test ring-on-ring su campioni a disco, che hanno portato alla rottura a trazione dei campioni, seguita da molteplici e estese delaminazioni. Per interpretare i risultati, il test è stato modellato numericamente utilizzando il modello precedentemente definito, includendo il Cohesive Zone Modelling (CZM), suggerendo una notevole riduzione della resistenza alla flessione in presenza di uno stato di stress biaxiale e mostrando le scarse proprietà interlaminari del materiale.
Experimental and numerical methods for damage tolerant LSI-C/SiC and C/ZrB2 composite structures
CAPORALE, ANTONIO MARIA
2023/2024
Abstract
The present work focuses on the study of the damage tolerance of a C/SiC composite produced by Liquid Silicon Infiltration, and of a ZrB2-based UHTCMC, produced by Spark Plasma Sintering. Their possible use for hot structural applications is a current issue for the design of the next generation of reusable space vehicles. An in-depth knowledge of nonlinear behavior, damage mechanisms, and residual strength of the two materials is mandatory to define those allowable values, which are the basis of a damage tolerant design approach. This work presents an extensive basic characterization of the materials, including tensile, bending, and interlaminar tests. UHTCMC showed extraordinary nonlinearity and plastic deformations, with a peculiar stiffness recovery effect. Nonlinearities were observed in C/SiC testing too, particularly relevant in off-axis direction. Interlaminar testing of C/SiC showed a considerable interlaminar fracture toughness with an R-curve effect, a sign of the presence of a process zone. A physical and analytical interpretation of the nonlinearities observed was then proposed, linking them to the evolution of the damage present in the matrix and/or the interface between the matrix and the fibers, caused by the severe Residual Thermal Stresses, developed during the manufacture. A bi-phasic Finite Element (FE) model is developed, implementing this analytical formulation, and generalizing it in the three-dimensional case. A constitutive law for the matrix phase was defined and implemented in a custom material subroutine. It is based on Drucker-Prager plasticity and Continuum Damage Mechanics (CDM), considering the effect of the biaxial thermal stress, which develops in cross-ply layups. Thereafter, a homogenized constitutive law based on a pressure-dependent Hill’s plasticity and CDM was defined, numerically implemented in a material subroutine, calibrated for the two materials, and partially validated by using the available experimental tests. Further investigations and validation of the models were then specifically conducted for the peculiar features of the two materials, considering their technology readiness levels. For the C/SiC CMC, a methodological protocol was proposed to deal with damages induced by low-energy impacts, their detectability, and the assessment of the retained properties. Impact tests were performed on C/SiC panels and CT scan analyses were performed showing the presence of multiple delaminations in the impact area. The effectiveness of Compression After Impact (CAI) test and flexural test in the assessment of residual strength of the impacted specimens was evaluated. CAI showed to have limits in correlating the impact energy with the compressive residual strength, related to the intrinsic compression resistance of CMCs. Contrarily, flexural tests turned out to be an effective method, showing that a hardly detectable damage can cause a considerable reduction of flexural strength. A preliminary numerical model, implementing the previously calibrated homogenized constitutive law, showed the importance of delaminations in capturing the impact resistance od C/SiC. In parallel, further investigations were conducted to improve the insight and the predictive capability referred to the highly nonlinear response of UHTCMC. The effects of biaxial stress on the flexural strength of UHTCMC were investigated through ring-on-ring tests on disk-shaped specimens, which resulted in the tensile failure of the specimens followed by multiple and extended delamination. To interpret the results, the test was numerically modeled using the previously defined model, including a Cohesive Zone Modelling (CZM), suggesting a considerable reduction of flexural strength in presence of biaxial stress state, and showing the poor interlaminar properties of the material.File | Dimensione | Formato | |
---|---|---|---|
Manuscript.pdf
accessibile in internet per tutti
Dimensione
8.34 MB
Formato
Adobe PDF
|
8.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222013