This thesis aims to introduce a novel risk-based decision-making approach as a supportive tool for large companies whose core business is that of designing, building and operating green power generation plants. The study broadens managers’ perspectives on the entire investment system, aiding in the risk determination and quantification. The method furtherly drives the decision makers in identifying the most critical activities upon which they have to focus on and allocate funds to mitigate the overall project risk, thus decreasing revenue losses. Overcoming some of the limitation of currently well-established statistical practices in industrial contexts, the methodology has been proposed and its efficacy demonstrated by employing it in a real use case of an agrivoltaic plant. This allows the company to replicate and adapt the built model for further investigations on other plants similarly exploiting renewable energy sources. Holistic Risk Analysis and Modelling (Ho.R.A.M.) has therefore made it possible to analyse the investment initiative by simultaneously taking into account human, technological and organizational variables. The proposed risk management approach goes through three different phases: system understanding, system functioning schematization and risk analysis. Once developed an overall understanding of the system, Artificial Logic Bayesian Algorithm allows shaping all the possible paths the system can follow. Downstream the approach provides the risk outputs, curves and spectrums related to the set of possible alternatives generated. The list of the most critical variables drives the implementation of risk mitigation proposals, whose efficiency could be verified in terms of expected damage and compared risk trends. Some of the phases of the project under investigation have been treated, highlighting the beneficial risk reduction effect of positive reinforcement in favor of employees as well as periodic audits and extra-payment involving external actors which contribute to the plant building.
La tesi ha lo scopo di introdurre un nuovo approccio decisionale basato sul rischio come strumento di supporto per grandi aziende il cui core business è quello di progettare, costruire ed esercire impianti di generazione di energia elettrica utilizzando fonti di energia rinnovabili e a basso impatto ambientale. Lo studio amplia le prospettive dei managers a tutto il sistema di investimento, aiutando nella determinazione del rischio e alla sua quantificazione. Il metodo, ancora, guida i decisori nell’identificazione delle criticità sulle quali concentrarsi e stanziare risorse per mitigare il rischio complessivo del progetto, riducendo così il mancato guadagno. Superando alcuni dei limiti dei consolidati metodi statistici attualmente utilizzati nei contesti industriali, la metodologia è stata proposta e la sua efficacia dimostrata tramite la sua applicazione ad un caso reale di impianto agrivoltaico. Questo permette alla società di replicare l’approccio e di adattare il modello costruito per eventuali ulteriori analisi di altri simili impianti che sfruttino fonti rinnovabili per la produzione di energia elettrica. H.o.R.A.M., Holistic Risk Analys and Modelling, ha reso possibile analizzare l’iniziativa di investimento tenendo contemporaneamente in considerazione variabili umane, tecnologiche e organizzative. L’approccio proposto è strutturato in tre fasi: la comprensione del sistema, la sua schematizzazione funzionale e l’analisi di rischio. Una volta raggiunta una complessiva comprensione del sistema, l’approccio A.L.B.A., Artificial Logic Bayesian Algorithm, permette di generare tutti i possibili scenari, e cioè percorsi, in cui il sistema può evolversi. A valle di ciò, il metodo fornisce i risultati del rischio, le sue curve e spettri che si riferiscono all’universo di possibilità creato. La lista di funzioni critiche guida poi l’implementazione di possibili soluzioni di mitigazione del rischio, la cui efficacia può essere verificata in termini di rischio numerico e tramite la comparazione degli andamenti del rischio. Alcune delle fasi del progetto che si sta analizzando sono state trattate, sottolineando il benefico effetto di riduzione del rischio ottenuto tramite l’impiego di rinforzi positivi per gli impiegati, di audit periodici e di compensi maggiorati in favore di attori esterni che contribuiscono alla realizzazione finale dell’impianto.
Project risk engineering of agrivoltaic plants
Marcello, Martina
2023/2024
Abstract
This thesis aims to introduce a novel risk-based decision-making approach as a supportive tool for large companies whose core business is that of designing, building and operating green power generation plants. The study broadens managers’ perspectives on the entire investment system, aiding in the risk determination and quantification. The method furtherly drives the decision makers in identifying the most critical activities upon which they have to focus on and allocate funds to mitigate the overall project risk, thus decreasing revenue losses. Overcoming some of the limitation of currently well-established statistical practices in industrial contexts, the methodology has been proposed and its efficacy demonstrated by employing it in a real use case of an agrivoltaic plant. This allows the company to replicate and adapt the built model for further investigations on other plants similarly exploiting renewable energy sources. Holistic Risk Analysis and Modelling (Ho.R.A.M.) has therefore made it possible to analyse the investment initiative by simultaneously taking into account human, technological and organizational variables. The proposed risk management approach goes through three different phases: system understanding, system functioning schematization and risk analysis. Once developed an overall understanding of the system, Artificial Logic Bayesian Algorithm allows shaping all the possible paths the system can follow. Downstream the approach provides the risk outputs, curves and spectrums related to the set of possible alternatives generated. The list of the most critical variables drives the implementation of risk mitigation proposals, whose efficiency could be verified in terms of expected damage and compared risk trends. Some of the phases of the project under investigation have been treated, highlighting the beneficial risk reduction effect of positive reinforcement in favor of employees as well as periodic audits and extra-payment involving external actors which contribute to the plant building.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Marcello_Tesi_01.pdf
non accessibile
Descrizione: testo tesi
Dimensione
34.02 MB
Formato
Adobe PDF
|
34.02 MB | Adobe PDF | Visualizza/Apri |
2024_07_Marcello_Executive Summary_02.pdf
non accessibile
Descrizione: executive summary
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222313