With advancements in space technology, it is imperative to continually assess the reliability and accuracy of radiation prediction models. The primary objective of this research is to analyze the radiation effects on the European Space Agency (ESA) Reference Single Event Upset (SEU) Monitor in different radiation environments encountered during various space missions and compare them to the predictions made with standard models. To achieve this, data collected from multiple missions is analyzed, including low Earth orbit (LEO) missions, geostationary orbit (GEO) missions, and interplanetary missions. Then, by the development of custom software, predictions of Electrical, Electronic, and Electromechanical (EEE) components performance in space are computed and subsequently compared to the in-flight data. This allows not only to verify the reliability of standard Radiation Hardness Assurance (RHA) methods, but also addresses the challenge of assessing component performance across missions, known as the flight-heritage problem. By bridging the gap between theoretical predictions and real-world observations, this thesis not only deepens our comprehension of the SEU Monitor's performance in space, but also provides knowledge on the space radiation environment itself. In a larger context, this thesis plays a part in the ongoing development of space technology by contributing to the safety and reliability of spacecraft and equipment during various space missions, including both satellite operations and space exploration.
Con l'avanzare della tecnologia spaziale, valutare l'affidabilità e l'accuratezza dei modelli di previsione delle radiazioni spaziali diventa sempre più importante. Il principale obiettivo di questa tesi è analizzare gli effetti delle radiazioni sul Reference Single Event Upset (SEU) Monitor dell'Agenzia Spaziale Europea (ESA) in diversi ambienti di radiazione incontrati durante varie missioni spaziali, e confrontarli con le previsioni fatte utilizzando modelli standard. A tal fine, vengono esaminati i dati raccolti da diverse missioni, incluse quelle in orbita terrestre bassa (LEO), orbita geostazionaria (GEO) e missioni interplanetarie. Successivamente, tramite lo sviluppo di software personalizzato, vengono calcolate le previsioni delle prestazioni dei componenti elettrici, elettronici e elettromeccanici (EEE) nello spazio per poi essere confrontate con i dati di volo. Questo approccio consente non solo di verificare l'affidabilità dei metodi standard di Radiation Hardness Assurance (RHA), ma va anche ad affrontare come uno stesso componente si comporta in missioni diverse, noto come il problema di Flight-Heritage. Colmando il divario tra le previsioni teoriche e le osservazioni reali, questa tesi non solo approfondisce la nostra comprensione delle prestazioni del Reference SEU Monitor nello spazio, ma fornisce anche preziose conoscenze sull'ambiente delle radiazioni spaziali. In un contesto più ampio, questa tesi contribuisce allo sviluppo continuo della tecnologia spaziale, migliorando la sicurezza e l'affidabilità delle navicelle e delle loro attrezzature durante le varie missioni spaziali, comprese le operazioni satellitari e l'esplorazione dello spazio.
Multi-mission comparison of radiation effects on the ESA SEU Monitor
DONADONI, MICHELE
2023/2024
Abstract
With advancements in space technology, it is imperative to continually assess the reliability and accuracy of radiation prediction models. The primary objective of this research is to analyze the radiation effects on the European Space Agency (ESA) Reference Single Event Upset (SEU) Monitor in different radiation environments encountered during various space missions and compare them to the predictions made with standard models. To achieve this, data collected from multiple missions is analyzed, including low Earth orbit (LEO) missions, geostationary orbit (GEO) missions, and interplanetary missions. Then, by the development of custom software, predictions of Electrical, Electronic, and Electromechanical (EEE) components performance in space are computed and subsequently compared to the in-flight data. This allows not only to verify the reliability of standard Radiation Hardness Assurance (RHA) methods, but also addresses the challenge of assessing component performance across missions, known as the flight-heritage problem. By bridging the gap between theoretical predictions and real-world observations, this thesis not only deepens our comprehension of the SEU Monitor's performance in space, but also provides knowledge on the space radiation environment itself. In a larger context, this thesis plays a part in the ongoing development of space technology by contributing to the safety and reliability of spacecraft and equipment during various space missions, including both satellite operations and space exploration.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Donadoni_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
20.44 MB
Formato
Adobe PDF
|
20.44 MB | Adobe PDF | Visualizza/Apri |
2024_07_Donadoni_Executive_summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222457