Light detection and ranging (LiDAR) is a technology that employs a laser to emit pulses and measure distances to create a 3D representation of the field as data cloud. Growing demand for immediate data access is surpassing the capabilities of traditional telecom infrastructures in terms of velocity and band width. In this quest, the concept of optical communication is introduced which its advancement is driven by breakthroughs in semiconductor technologies. Semiconductors offer Silicon Photonics (SiPh) as a fundamental material to integrate Silicon-based LiDAR systems onto monolithic platforms as Photonic Integrated Circuits (PICs). This innovation predominantly incorporates photonic, rather than mechanical components and results in the miniaturization and swift performance of the system. Optical communication is materialized on SiPh by optical routers composed of Mach-Zehnder (MZ) optical switches which form a matrix for signal modulation and routing. Current work presents a prototype designated as Alcor, manufactured by STMicroelectronics Co., which leverages SiPh technology within a PIC. Alcor epitomizes a 1×64 optical router served in the origin by a laser source and terminating in 64 output pixels. Alcor’s architecture is composed of a cascaded configuration of MZ optical switches arranged in 6 sequential stages multiplicatively to manage the light propagation. This work provides the details on fully automation process for a 1×16 segment of the optical router, which is achieved through a quartet of pixel aggregations. Employing maximum power point tracker (MPPT) algorithm and exploiting working principle of MZ switches on phase shifting, perturb and observe (P&O) is determined as the logic of the controller. Controller is meticulously designed and its efficacy is evaluated through simulations conducted in Simulink environment. Subsequently, the controller is implemented on the actual system by programming STM32 microcontroller and the capability of the controlled system in directing the light with maximum power toward the target pixel out of the 64 potential output channel is corroborated through empirical verification.
La technologia LiDAR utilizza laser per emettere impulsi e misurare distanze, alla fine crea un 3D cloud di dati. La crescente domanda di accesso immediato ai dati sta superando le capacità delle infrastrutture di telecomunicazione tradizionali in termini di velocità e bandwidth. Questa ricerca, introduce il concetto di comunicazione ottica, il cui progresso è guidato da innovazioni nelle tecnologie a semiconduttori. I semiconduttori offrono la Silicon Photonic (SiPh) come materiale fondamentale per integrare sistemi LiDAR basati su Photonic Integrated Circuit (PIC). Questa innovazione incorpora prevalentemente componenti fotonici, invece che meccanici, e risulta nella miniaturizzazione e nell'incremento di prestazioni del sistema. La comunicazione ottica è realizzata su SiPh tramite router ottici composti da interruttori ottici Mach-Zehnder (MZ) che formano una matrice per la modulazione e il routing del segnale. Il presente lavoro introduce un prototipo, Alcor, prodotto dalla STMicroelectronics Co., che sfrutta la tecnologia SiPh all'interno di un PIC. Alcor rappresenta un router ottico 1×64 alimentato all'origine da una sorgente laser e terminante in 64 pixel di uscita. L'architettura di Alcor è composta da una configurazione a cascata di interruttori ottici MZ disposti in 6 stadi sequenziali per gestire la propagazione della luce. Questo lavoro fornisce dettagli sul processo di automazione completo per un segmento 1×16 del router ottico, che è ottenuto attraverso un quartetto di aggregazioni di pixel. Impiegando l'algoritmo Maximum Power Point Tracking (MPPT) e sfruttando il principio di funzionamento degli interruttori MZ sulla variazione di fase, il Purturb and Observe (P&O) è determinato come logica del controller. Il controller è progettato e la sua efficacia è valutata attraverso simulazioni condotte nell'ambiente Simulink. Successivamente, il controller è implementato sul sistema reale programmando il microcontrollore STM32 e la capacità del sistema controllato di indirizzare la luce con la massima potenza verso il pixel di destinazione tra i 64 canali di uscita potenziali è confermata attraverso la verifica empirica.
Design and development of a control system for a LiDAR projection device realized in silicon photonics
Hajitalebi, Elaheh
2023/2024
Abstract
Light detection and ranging (LiDAR) is a technology that employs a laser to emit pulses and measure distances to create a 3D representation of the field as data cloud. Growing demand for immediate data access is surpassing the capabilities of traditional telecom infrastructures in terms of velocity and band width. In this quest, the concept of optical communication is introduced which its advancement is driven by breakthroughs in semiconductor technologies. Semiconductors offer Silicon Photonics (SiPh) as a fundamental material to integrate Silicon-based LiDAR systems onto monolithic platforms as Photonic Integrated Circuits (PICs). This innovation predominantly incorporates photonic, rather than mechanical components and results in the miniaturization and swift performance of the system. Optical communication is materialized on SiPh by optical routers composed of Mach-Zehnder (MZ) optical switches which form a matrix for signal modulation and routing. Current work presents a prototype designated as Alcor, manufactured by STMicroelectronics Co., which leverages SiPh technology within a PIC. Alcor epitomizes a 1×64 optical router served in the origin by a laser source and terminating in 64 output pixels. Alcor’s architecture is composed of a cascaded configuration of MZ optical switches arranged in 6 sequential stages multiplicatively to manage the light propagation. This work provides the details on fully automation process for a 1×16 segment of the optical router, which is achieved through a quartet of pixel aggregations. Employing maximum power point tracker (MPPT) algorithm and exploiting working principle of MZ switches on phase shifting, perturb and observe (P&O) is determined as the logic of the controller. Controller is meticulously designed and its efficacy is evaluated through simulations conducted in Simulink environment. Subsequently, the controller is implemented on the actual system by programming STM32 microcontroller and the capability of the controlled system in directing the light with maximum power toward the target pixel out of the 64 potential output channel is corroborated through empirical verification.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Hajitalebi_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
5.42 MB
Formato
Adobe PDF
|
5.42 MB | Adobe PDF | Visualizza/Apri |
2024_07_Hajitalebi_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222574