Joint disorders such as osteoarthritis (OA) and rheumatoid arthritis (RA) are significant contributors to disability worldwide. However, despite the high prevalence of OA and RA, effective therapies for these conditions are missing due to gaps of knowledge about disease mechanisms and the absence of reliable preclinical models. This PhD dissertation investigates the potential of organs-on-chip (OoC) technology to address these challenges by recapitulating complex biological environments relevant to OA and RA. The joint is a complex organ composed of multiple tissues, including articular cartilage, subchondral bone, synovial membrane, and synovial fluid, with each tissue playing a distinct role in joint function. Both OA and RA are conditions affecting the entire joint structure. On one hand, OA is a degenerative joint disorder, leading to cartilage degradation, bone remodeling, and synovial inflammation. On the other hand, RA is an autoimmune disorder and results in chronic inflammation of the synovium, leading to cartilage destruction and bone erosion. The complex interactions between various cell types and molecular pathways contribute to OA and RA progression. Current preclinical models for studying joint disorders have limitations in replicating the complexity of human diseases. Animal models lack translational relevance, while traditional in vitro models fail to accurately recapitulate the native tissue environment. In this scenario, OoC offer a promising alternative by mimicking key aspects of joint physiology, including tissue architecture, mechanical stimuli, and cellular interactions. Existing literature displays innovative OoC designs tailored to study cartilage, synovium, and osteochondral units, providing insights into disease mechanisms, and facilitating drug testing. Additionally, the integration of immune cells into these platforms is crucial for understanding the immune-mediated aspects of joint disorders, although challenges such as spatial and temporal control over immune cell distribution remain. The continued development of advanced OoC technologies holds promise for revolutionizing the study and treatment of joint diseases, offering more accurate models that better recapitulate human physiology and pathology. In this context, this PhD thesis focuses on developing novel OoC platforms tailored to study joint-related pathologies. The research has a dual focus: i) creating sophisticated models that replicate joint complexity and interactions to unravel critical disease aspects; ii) developing simpler yet robust OoC joint models for efficient drug screening, aligning with industry requirements and ethical considerations. Specifically, each chapter of the thesis details a specific platform developed to address distinct research questions. First, a compartmentalized joint-on-chip (JoC) model will be introduced to explore the contribution of cartilage and synovium to OA pathogenesis. Then, iMµne will be presented, i.e., a technology integrating immune cells into OoC platforms to investigate immune interactions in RA. Finally, a microfluidic platform specifically developed to test injectable OA therapies in a physiologically relevant environment, named uBeat MultiCompress®, will be described. The development of pharmacological interventions for OA faces challenges due to limited understanding of disease mechanisms and tissue interactions during early pathology stages. A novel compartmentalized JoC platform was here designed to simulate cartilage-synovium interactions, aimed at assessing how the breakdown of the natural communication between these tissues contributes to OA development. The platform allows for (i) the independent maturation of 3D human cartilage and synovial micro-structures in independent compartments, (ii) the induction of OA characteristics in either of these micro-tissues, and finally (iii) the control of their interaction over space and time, thanks to the presence of normally closed microfluidics valves. Biological validation demonstrated successful establishment of healthy synovium and cartilage models from human primary cells, along with synovial inflammation through biochemical stimulation and mechanically induced OA traits in cartilage. Then, co-culture experiments revealed intricate crosstalk between cartilage and synovium, highlighting synovial activation even in the presence of healthy cartilage and the exacerbating effect of cartilage on synovial inflammation. Moreover, mechanically damaged cartilage triggered synovial ECM production and macrophage activation, while synovial inflammation induced inflammatory traits in cartilage, shedding light on early OA pathogenesis. Overall, the JoC platform offers promise in dissecting OA mechanisms. Focus of the second project was on the integration of immune cells in OoC. The dysregulation of the immune system plays a crucial role in the pathogenesis of many diseases, among which we find RA, where immune cells such as pro-inflammatory macrophages and T helper 1 (Th1) cells drive the inflammatory cascade. Thus, including immune system in in vitro models is pivotal to recapitulate and better understand the complex interactions between these immune cell subsets and their secreted mediators. A compartmentalized microfluidic platform, named iMµne, was thus devised for precise confinement of circulating immune cells. The integration of innovative Normally-closed sieving valves encompassing underneath microgrooves allowed, through minimal waste of biological material, to co-culture different immune cell types (e.g., macrophages and Th1). Moreover, the platform allows to stimulate cell subsets separately, and to assess their crosstalk at desired time points. Functional validation of the platform demonstrated its ability to create stable chemotactic gradients, allowing for induction and evaluation of Th1 cells migration. In a proof-of-concept study, the platform allowed to assess Th1 T cells migration towards pro-inflammatory macrophages, thus replicating a characteristic interaction among immune cells triggered during RA onset. These results thus support the suitability of the platform to study immune cells crosstalk and migration phenomena, being potentially applicable to many immune cell mechanisms, both involved in RA progression and in different immune-mediated pathologies. Overall, the complexity of the platforms developed in the first two projects presents a dual-sided perspectives. While such platforms allow for comprehensive data generation, thereby holding promise in elucidating crucial aspects of joint disorders, they encounter challenges in alignment with pharmaceutical industries, that typically prioritize models characterized by simplicity and ease of handling. Thus, focus of the third sub-project was on the realization of simpler mid-throughput OoC platforms to test novel OA therapeutic treatments. Current treatments for OA often fail to address the underlying pathophysiology and may have systemic side effects, particularly associated with long-term use of non-steroidal anti-inflammatory drugs (NSAIDs). Thus, researchers are currently directing their efforts towards innovative polymer-drug combinations, such as mixtures of hyaluronic acid viscoelastic hydrogels and NSAIDs like Diclofenac, to ensure sustained release of the NSAID within the joint following intra-articular injection. However, the progress of novel injectable therapies for OA is hindered by the absence of preclinical models that accurately represent the pathology of the disease. The uBeat® MultiCompress platform was here presented as a novel approach for studying anti-OA injectable therapeutics on human mechanically damaged OA cartilage microtissues, in a physiologically relevant environment. This platform can accommodate injectable therapeutic formulations and was successfully tested with SYN321, a novel diclofenac-hyaluronate conjugate under development. Results indicated the platform's effectiveness in evaluating therapeutic potential, showing downregulation of inflammatory markers and reduction in matrix degradation in OA cartilage micro-tissues. The uBeat® MultiCompress platform thus represents a valuable tool for OA research, offering a bridge between traditional in vitro studies and potential clinical applications, with implications for future drug discovery. In summary, this doctoral dissertation aims at demonstrating that the combination of OoC technology and a multidisciplinary approach represents a powerful tool in modeling joint disorders and conducting drug testing.
I disturbi articolari come l'osteoartrite (OA) e l'artrite reumatoide (AR) sono contributori significativi alla disabilità a livello mondiale. Tuttavia, nonostante l'alta prevalenza di OA e AR, le terapie efficaci per queste condizioni sono assenti a causa delle lacune di conoscenza sui meccanismi della malattia e dell'assenza di modelli preclinici affidabili. Questa tesi di dottorato indaga il potenziale della tecnologia degli organi su chip (OoC) per affrontare queste sfide, ricreando ambienti biologici complessi rilevanti per OA e RA. L'articolazione è un organo complesso composto da diversi tessuti, tra cui cartilagine articolare, osso subcondrale, membrana sinoviale e liquido sinoviale, ciascuno con un ruolo distinto nella funzione articolare. Sia l'OA che l'AR sono condizioni che interessano l'intera struttura dell'articolazione. Da un lato, l'OA è un disturbo degenerativo delle articolazioni, che porta a degradazione della cartilagine, rimodellamento osseo e infiammazione sinoviale. Dall'altro lato, l'AR è un disturbo autoimmune che provoca infiammazione cronica della sinovia, portando alla distruzione della cartilagine e all'erosione ossea. Le complesse interazioni tra vari tipi cellulari e percorsi molecolari contribuiscono alla progressione di queste patologie. Gli attuali modelli preclinici per lo studio dei disturbi articolari hanno limitazioni nel replicare la complessità delle malattie umane. I modelli animali mancano di rilevanza traslazionale, mentre i modelli in vitro tradizionali non riescono a ricreare accuratamente l'ambiente tissutale nativo. In questo scenario, gli OoC offrono un'alternativa promettente imitando aspetti chiave della fisiologia articolare, inclusa l'architettura dei tessuti, stimoli meccanici e interazioni cellulari. La letteratura esistente mostra design innovativi di OoC progettati per studiare la cartilagine, la sinovia e le unità osteocondrali, fornendo informazioni sui meccanismi della malattia e facilitando il testing dei farmaci. Inoltre, l'integrazione delle cellule immunitarie in queste piattaforme è cruciale per comprendere gli aspetti immuno-mediati dei disturbi articolari, sebbene permangano sfide come il controllo spaziale e temporale della distribuzione delle cellule immunitarie. Lo sviluppo continuo di tecnologie OoC avanzate promette di rivoluzionare lo studio e il trattamento delle malattie articolari, offrendo modelli più accurati che riproducono meglio la fisiologia e la patologia umana. In questo contesto, questa tesi di dottorato si concentra sullo sviluppo di nuove piattaforme OoC destinate allo studio delle patologie articolari. La ricerca ha un doppio focus: i) creare modelli sofisticati che replicano la complessità e le interazioni articolari per svelare aspetti critici della malattia; ii) sviluppare modelli articolari OoC più semplici ma robusti per uno screening efficiente dei farmaci, allineandosi ai requisiti industriali e considerazioni etiche. In particolare, ogni capitolo della tesi descrive una specifica piattaforma sviluppata per rispondere a distinti quesiti di ricerca. In primo luogo, verrà introdotto un modello compartimentalizzato di joint-on-chip (JoC) per esplorare il contributo della cartilagine e della sinovia alla patogenesi dell'OA. Poi verrà presentato iMµne, ossia una tecnologia che integra cellule immunitarie nelle piattaforme OoC per investigare le interazioni immunitarie nell'AR. Infine, verrà descritta una piattaforma microfluidica sviluppata specificamente per testare terapie iniettabili per l'OA in un ambiente fisiologicamente rilevante, denominata uBeat MultiCompress®. Lo sviluppo di interventi farmacologici per l'OA affronta sfide a causa della limitata comprensione dei meccanismi della malattia e delle interazioni tissutali nelle fasi iniziali della patologia. Una nuova piattaforma JoC compartimentalizzata è stata progettata per simulare le interazioni cartilagine-sinovia, con l'obiettivo di valutare come la rottura della comunicazione naturale tra questi tessuti contribuisca allo sviluppo dell'OA. La piattaforma consente (i) la maturazione indipendente di micro-strutture di cartilagine umana e sinovia 3D in compartimenti separati, (ii) l'induzione delle caratteristiche dell'OA in uno di questi micro-tessuti e infine (iii) il controllo delle loro interazioni nello spazio e nel tempo, grazie alla presenza di valvole microfluidiche normalmente chiuse. La validazione biologica ha dimostrato il successo dell'istituzione di modelli di sinovia e cartilagine sani da cellule primarie umane, insieme all'infiammazione sinoviale tramite stimolazione biochimica e caratteristiche OA indotte meccanicamente nella cartilagine. Successivamente, gli esperimenti di co-coltura hanno rivelato complesse interazioni tra cartilagine e sinovia, evidenziando l'attivazione sinoviale anche in presenza di cartilagine sana e l'effetto esacerbante della cartilagine sull'infiammazione sinoviale. Inoltre, la cartilagine danneggiata meccanicamente ha innescato la produzione di ECM sinoviale e l'attivazione dei macrofagi, mentre l'infiammazione sinoviale ha indotto caratteristiche infiammatorie nella cartilagine, facendo luce sulla patogenesi precoce dell'OA. Complessivamente, la piattaforma JoC offre promesse nel dissezionare i meccanismi dell'OA. Il focus del secondo progetto è stato sull'integrazione delle cellule immunitarie negli OoC. La disfunzione del sistema immunitario gioca un ruolo cruciale nella patogenesi di molte malattie, tra cui l'AR, dove le cellule immunitarie come i macrofagi pro-infiammatori e le cellule T helper 1 (Th1) guidano la cascata infiammatoria. Pertanto, includere il sistema immunitario nei modelli in vitro è fondamentale per ricapitolare e comprendere meglio le complesse interazioni tra questi sottotipi di cellule immunitarie e i loro mediatori secreti. Una piattaforma microfluidica compartimentalizzata, denominata iMµne, è stata dunque concepita per il confinamento preciso delle cellule immunitarie circolanti. L'integrazione di innovative valvole di setacciamento normalmente chiuse comprendenti microcanali sottostanti ha permesso, con un minimo spreco di materiale biologico, di co-coltivare diversi tipi di cellule immunitarie (ad esempio, macrofagi e Th1). Inoltre, la piattaforma consente di stimolare separatamente i sottotipi cellulari e di valutare il loro crosstalk in momenti desiderati. La validazione funzionale della piattaforma ha dimostrato la sua capacità di creare gradienti chemiotattici stabili, permettendo l'induzione e la valutazione della migrazione delle cellule Th1. In uno studio di prova del concetto, la piattaforma ha consentito di valutare la migrazione delle cellule T Th1 verso i macrofagi pro-infiammatori, replicando così un'interazione caratteristica tra cellule immunitarie attivata durante l'insorgenza dell'AR. Questi risultati supportano quindi l'idoneità della piattaforma per studiare il crosstalk e i fenomeni di migrazione delle cellule immunitarie, potenzialmente applicabili a molti meccanismi delle cellule immunitarie, sia coinvolti nella progressione dell'AR che in diverse patologie immuno-mediate. Nel complesso, la complessità delle piattaforme sviluppate nei primi due progetti presenta una doppia prospettiva. Sebbene tali piattaforme consentano una generazione completa di dati, promettendo così di chiarire aspetti cruciali dei disturbi articolari, incontrano sfide di allineamento con le industrie farmaceutiche, che tipicamente privilegiano modelli caratterizzati da semplicità e facilità di gestione. Pertanto, il focus del terzo sotto-progetto è stato sulla realizzazione di piattaforme OoC più semplici di medio throughput per testare nuove terapie anti-OA. I trattamenti attuali per l'OA spesso non riescono a indirizzare la patofisiologia sottostante e possono avere effetti collaterali sistemici, particolarmente associati all'uso a lungo termine di farmaci antinfiammatori non steroidei (FANS). Pertanto, i ricercatori stanno attualmente dirigendo i loro sforzi verso combinazioni innovative di polimeri e farmaci, come miscele di idrogel viscoelastici di acido ialuronico e FANS come il Diclofenac, per garantire un rilascio sostenuto del FANS all'interno dell'articolazione dopo l'iniezione intra-articolare. Tuttavia, il progresso delle nuove terapie iniettabili per l'OA è ostacolato dall'assenza di modelli preclinici che rappresentino accuratamente la patologia della malattia. La piattaforma uBeat® MultiCompress è stata qui presentata come un nuovo approccio per lo studio delle terapie iniettabili anti-OA su micro-tessuti di cartilagine OA umana danneggiata meccanicamente, in un ambiente fisiologicamente rilevante. Questa piattaforma può ospitare formulazioni terapeutiche iniettabili ed è stata testata con successo con SYN321, un nuovo coniugato di diclofenac-ialuronato in fase di sviluppo. I risultati hanno indicato l'efficacia della piattaforma nella valutazione del potenziale terapeutico, mostrando una riduzione dei marcatori infiammatori e della degradazione della matrice nei micro-tessuti cartilaginei OA. La piattaforma uBeat® MultiCompress rappresenta quindi uno strumento prezioso per la ricerca sull'OA, offrendo un ponte tra gli studi in vitro tradizionali e le potenziali applicazioni cliniche, con implicazioni per la futura scoperta di farmaci. In sintesi, questa tesi di dottorato mira a dimostrare che la combinazione della tecnologia OoC e di un approccio multidisciplinare rappresenta uno strumento potente per modellare i disturbi articolari e condurre test sui farmaci.
Development of organ-on-chip platforms as advanced in vitro tools to investigate joint-related pathologies
PALMA, CECILIA
2023/2024
Abstract
Joint disorders such as osteoarthritis (OA) and rheumatoid arthritis (RA) are significant contributors to disability worldwide. However, despite the high prevalence of OA and RA, effective therapies for these conditions are missing due to gaps of knowledge about disease mechanisms and the absence of reliable preclinical models. This PhD dissertation investigates the potential of organs-on-chip (OoC) technology to address these challenges by recapitulating complex biological environments relevant to OA and RA. The joint is a complex organ composed of multiple tissues, including articular cartilage, subchondral bone, synovial membrane, and synovial fluid, with each tissue playing a distinct role in joint function. Both OA and RA are conditions affecting the entire joint structure. On one hand, OA is a degenerative joint disorder, leading to cartilage degradation, bone remodeling, and synovial inflammation. On the other hand, RA is an autoimmune disorder and results in chronic inflammation of the synovium, leading to cartilage destruction and bone erosion. The complex interactions between various cell types and molecular pathways contribute to OA and RA progression. Current preclinical models for studying joint disorders have limitations in replicating the complexity of human diseases. Animal models lack translational relevance, while traditional in vitro models fail to accurately recapitulate the native tissue environment. In this scenario, OoC offer a promising alternative by mimicking key aspects of joint physiology, including tissue architecture, mechanical stimuli, and cellular interactions. Existing literature displays innovative OoC designs tailored to study cartilage, synovium, and osteochondral units, providing insights into disease mechanisms, and facilitating drug testing. Additionally, the integration of immune cells into these platforms is crucial for understanding the immune-mediated aspects of joint disorders, although challenges such as spatial and temporal control over immune cell distribution remain. The continued development of advanced OoC technologies holds promise for revolutionizing the study and treatment of joint diseases, offering more accurate models that better recapitulate human physiology and pathology. In this context, this PhD thesis focuses on developing novel OoC platforms tailored to study joint-related pathologies. The research has a dual focus: i) creating sophisticated models that replicate joint complexity and interactions to unravel critical disease aspects; ii) developing simpler yet robust OoC joint models for efficient drug screening, aligning with industry requirements and ethical considerations. Specifically, each chapter of the thesis details a specific platform developed to address distinct research questions. First, a compartmentalized joint-on-chip (JoC) model will be introduced to explore the contribution of cartilage and synovium to OA pathogenesis. Then, iMµne will be presented, i.e., a technology integrating immune cells into OoC platforms to investigate immune interactions in RA. Finally, a microfluidic platform specifically developed to test injectable OA therapies in a physiologically relevant environment, named uBeat MultiCompress®, will be described. The development of pharmacological interventions for OA faces challenges due to limited understanding of disease mechanisms and tissue interactions during early pathology stages. A novel compartmentalized JoC platform was here designed to simulate cartilage-synovium interactions, aimed at assessing how the breakdown of the natural communication between these tissues contributes to OA development. The platform allows for (i) the independent maturation of 3D human cartilage and synovial micro-structures in independent compartments, (ii) the induction of OA characteristics in either of these micro-tissues, and finally (iii) the control of their interaction over space and time, thanks to the presence of normally closed microfluidics valves. Biological validation demonstrated successful establishment of healthy synovium and cartilage models from human primary cells, along with synovial inflammation through biochemical stimulation and mechanically induced OA traits in cartilage. Then, co-culture experiments revealed intricate crosstalk between cartilage and synovium, highlighting synovial activation even in the presence of healthy cartilage and the exacerbating effect of cartilage on synovial inflammation. Moreover, mechanically damaged cartilage triggered synovial ECM production and macrophage activation, while synovial inflammation induced inflammatory traits in cartilage, shedding light on early OA pathogenesis. Overall, the JoC platform offers promise in dissecting OA mechanisms. Focus of the second project was on the integration of immune cells in OoC. The dysregulation of the immune system plays a crucial role in the pathogenesis of many diseases, among which we find RA, where immune cells such as pro-inflammatory macrophages and T helper 1 (Th1) cells drive the inflammatory cascade. Thus, including immune system in in vitro models is pivotal to recapitulate and better understand the complex interactions between these immune cell subsets and their secreted mediators. A compartmentalized microfluidic platform, named iMµne, was thus devised for precise confinement of circulating immune cells. The integration of innovative Normally-closed sieving valves encompassing underneath microgrooves allowed, through minimal waste of biological material, to co-culture different immune cell types (e.g., macrophages and Th1). Moreover, the platform allows to stimulate cell subsets separately, and to assess their crosstalk at desired time points. Functional validation of the platform demonstrated its ability to create stable chemotactic gradients, allowing for induction and evaluation of Th1 cells migration. In a proof-of-concept study, the platform allowed to assess Th1 T cells migration towards pro-inflammatory macrophages, thus replicating a characteristic interaction among immune cells triggered during RA onset. These results thus support the suitability of the platform to study immune cells crosstalk and migration phenomena, being potentially applicable to many immune cell mechanisms, both involved in RA progression and in different immune-mediated pathologies. Overall, the complexity of the platforms developed in the first two projects presents a dual-sided perspectives. While such platforms allow for comprehensive data generation, thereby holding promise in elucidating crucial aspects of joint disorders, they encounter challenges in alignment with pharmaceutical industries, that typically prioritize models characterized by simplicity and ease of handling. Thus, focus of the third sub-project was on the realization of simpler mid-throughput OoC platforms to test novel OA therapeutic treatments. Current treatments for OA often fail to address the underlying pathophysiology and may have systemic side effects, particularly associated with long-term use of non-steroidal anti-inflammatory drugs (NSAIDs). Thus, researchers are currently directing their efforts towards innovative polymer-drug combinations, such as mixtures of hyaluronic acid viscoelastic hydrogels and NSAIDs like Diclofenac, to ensure sustained release of the NSAID within the joint following intra-articular injection. However, the progress of novel injectable therapies for OA is hindered by the absence of preclinical models that accurately represent the pathology of the disease. The uBeat® MultiCompress platform was here presented as a novel approach for studying anti-OA injectable therapeutics on human mechanically damaged OA cartilage microtissues, in a physiologically relevant environment. This platform can accommodate injectable therapeutic formulations and was successfully tested with SYN321, a novel diclofenac-hyaluronate conjugate under development. Results indicated the platform's effectiveness in evaluating therapeutic potential, showing downregulation of inflammatory markers and reduction in matrix degradation in OA cartilage micro-tissues. The uBeat® MultiCompress platform thus represents a valuable tool for OA research, offering a bridge between traditional in vitro studies and potential clinical applications, with implications for future drug discovery. In summary, this doctoral dissertation aims at demonstrating that the combination of OoC technology and a multidisciplinary approach represents a powerful tool in modeling joint disorders and conducting drug testing.File | Dimensione | Formato | |
---|---|---|---|
PhD THESIS_Palma Cecilia_XXXV Cycle_Revised.pdf
non accessibile
Descrizione: PhD Thesis
Dimensione
9.91 MB
Formato
Adobe PDF
|
9.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222601