This thesis was developed at the PEM (Production Engineering of E-Mobility Components) institute of RWTH University in Aachen. The work focuses on the development of a model that simulates the production chains of the LFP (lithium iron phosphate) cathode material and calculates its manufacturing emissions. This stems from the need to have a tool to reliably and dynamically assess the environmental impact of lithium-ion battery production chains especially by giving manufacturing companies the opportunity to know more precisely their scope 3 emissions (other indirect emissions along the value chain, outside the direct control of the organization). To date, indeed, companies and policymakers can only rely on "static" values, i.e. those relating to a specific case that are difficult to decontextualise or too generic for applications in different situations. The data on which the operation of the model is based are derived from careful consultation of scientific papers combined with calculations made by the author to establish the values of the parameters. The results obtained using the developed tool are satisfactory and to be considered fairly aligned with the results stated by other studies pertaining to the subject. Thus, the model is effective in establishing material, energy and emission flows of precursor materials but has some weaknesses in relation to the parameters used for the final production processes that aggregate these precursors to produce the cathode paste. This is due to the secrecy of these methods, considered a strategic asset of manufacturing companies, as well as the rapid evolution of these methods. The model is an early version of what could become a powerful tool for companies and policymakers if a collaboration of researchers and developers is created to come up with a more comprehensive open-source program with more features.
Questa tesi è stata sviluppata presso il dipartimento PEM (Production Engineering of E-Mobility Components) dell'Università RWTH di Aachen. Il lavoro si concentra sullo sviluppo di un modello che simula la catena produttiva del materiale catodico delle batterie LFP calcolandone le emissioni. Ciò deriva dal bisogno di avere uno strumento che permetta di valutare in modo affidabile e dinamico l’impatto ambientale delle catene produttive delle batterie a ioni di litio, soprattutto dando alle aziende manifatturiere la possibilità di conoscere in modo più preciso le loro emissioni di scope 3 (altre emissioni indirette lungo la catena del valore, fuori dal controllo diretto dell'organizzazione). Ad oggi, infatti, aziende e policymakers possono fare affidamento solo su valori "statici" ovvero relativi ad un caso specifico difficilmente decontestualizzabile o troppo generici per applicazioni in situazioni differenti. I dati sui quali si basa il funzionamento del modello derivano da un'attenta consultazione di paper scientifici unita ai calcoli effettuati dall'autore per stabilire i valori di alcuni parametri. I risultati ottenuti utilizzando il tool sviluppato sono soddisfacenti e da considerarsi discretamente allineati ai risultati dichiarati da altri studi inerenti alla tematica. Il modello è quindi efficacie nello stabilire i flussi di materiale, energetici e le emissioni dei materiali precursori ma presenta alcune debolezze in relazione ai parametri usati per i processi produttivi che aggregano tali precursori per produrre la pasta catodica. Ciò è dovuto alla segretezza di questi metodi considerati un asset strategico dalle aziende manifatturiere e alla rapida evoluzione dei suddetti metodi. Il modello è una versione iniziale di quello che potrebbe diventare uno strumento potente per aziende e policymakers qualora si creasse una collaborazione tra ricercatori e sviluppatori che elabori un programma open-source più completo e con più funzioni.
Climate impact evaluation of LFP (lithium iron phosphate) cathode material through the creation of a dynamic model
CAIROLI, DAVIDE
2023/2024
Abstract
This thesis was developed at the PEM (Production Engineering of E-Mobility Components) institute of RWTH University in Aachen. The work focuses on the development of a model that simulates the production chains of the LFP (lithium iron phosphate) cathode material and calculates its manufacturing emissions. This stems from the need to have a tool to reliably and dynamically assess the environmental impact of lithium-ion battery production chains especially by giving manufacturing companies the opportunity to know more precisely their scope 3 emissions (other indirect emissions along the value chain, outside the direct control of the organization). To date, indeed, companies and policymakers can only rely on "static" values, i.e. those relating to a specific case that are difficult to decontextualise or too generic for applications in different situations. The data on which the operation of the model is based are derived from careful consultation of scientific papers combined with calculations made by the author to establish the values of the parameters. The results obtained using the developed tool are satisfactory and to be considered fairly aligned with the results stated by other studies pertaining to the subject. Thus, the model is effective in establishing material, energy and emission flows of precursor materials but has some weaknesses in relation to the parameters used for the final production processes that aggregate these precursors to produce the cathode paste. This is due to the secrecy of these methods, considered a strategic asset of manufacturing companies, as well as the rapid evolution of these methods. The model is an early version of what could become a powerful tool for companies and policymakers if a collaboration of researchers and developers is created to come up with a more comprehensive open-source program with more features.File | Dimensione | Formato | |
---|---|---|---|
Thesis Davide Cairoli.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.13 MB
Formato
Adobe PDF
|
5.13 MB | Adobe PDF | Visualizza/Apri |
Executive Summary DC Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222629