Aviation is a crucial part of global connectivity, requiring high levels of safety and efficiency. Traditional radar systems used in air traffic control have limitations such as coverage gaps, lower resolution, and higher latency. To address these issues, the aviation industry has adopted Automatic Dependent Surveillance-Broadcast (ADS-B) technology. ADS-B uses satellite navigation to provide precise, real-time information about aircraft, potentially transforming air traffic management by improving efficiency and reducing congestion. However, ADS-B’s openness has raised significant concerns about cybersecurity threats, including eavesdropping, message deletion, and message injection. Most existing studies look at ADS-B in isolation, ignoring its operation within a larger network of aviation systems. This thesis reevaluates the perceived vulnerabilities of ADS-B by considering its integration with other key aviation safety systems, such as the Traffic Collision Avoidance System (TCAS) and Primary and Secondary Surveillance Radars (PSR and SSR). By reassessing the conventional threat models with this broader perspective, the research finds that the risks associated with ADS-B are often overstated. Key findings suggest that while eavesdropping remains a consistent threat due to the open nature of ADS-B, the likelihood and impact of message deletion and injection are greatly reduced when ADS-B is used alongside other systems. This is due to the resilience and redundancy provided by these integrated systems. The study recommends maintaining multiple systems to ensure safety, investing in advanced technologies to resist interference, and providing continuous training and research to stay ahead of cybersecurity threats. In conclusion, the thesis supports a multi-layered defense strategy that combines ADS-B with other surveillance systems to enhance overall security and operational effectiveness in aviation. These insights suggest a phased and strategic approach to implementing ADS-B, coupled with ongoing policy adjustments and technological investments, to create a safer and more efficient air traffic management system.
L'aviazione è una componente cruciale della connettività globale, richiedendo alti livelli di sicurezza ed efficienza. I sistemi radar tradizionali usati nel controllo del traffico aereo presentano limitazioni come gap nella copertura, risoluzione inferiore e maggiore latenza. Per affrontare questi problemi, l'industria aeronautica ha adottato la tecnologia Automatic Dependent Surveillance-Broadcast. ADS-B utilizza la navigazione satellitare per fornire informazioni precise e in tempo reale sugli aerei, con il potenziale di trasformare la gestione del traffico aereo migliorando l'efficienza e riducendo la congestione. Tuttavia, l'utilizzo di ADS-B ha sollevato preoccupazioni riguardo alle minacce informatiche, tra cui l'intercettazione, la cancellazione dei messaggi e l'iniezione di messaggi. La maggior parte degli studi esistenti esamina l'ADS-B in isolamento, ignorando il suo funzionamento all'interno di una rete più ampia di sistemi aeronautici. Questa tesi rivaluta le vulnerabilità percepite in ADS-B considerando la sua integrazione con altri sistemi di sicurezza aeronautica, come il sistema di prevenzione delle collisioni (TCAS) e i radar di sorveglianza primaria e secondaria (PSR e SSR). Riesaminando i modelli di minaccia convenzionali con questa prospettiva più ampia, la ricerca rileva che i rischi associati ad ADS-B sono spesso esagerati. I principali risultati suggeriscono che, la probabilità e l'impatto della cancellazione e dell'iniezione di messaggi sono notevolmente ridotti quando l'ADS-B viene utilizzato insieme ad altri sistemi. Ciò è dovuto alla resilienza e alla ridondanza fornita da questi sistemi integrati. Lo studio raccomanda quindi di mantenere più sistemi per garantire la sicurezza, investire in tecnologie avanzate per resistere alle interferenze e fornire formazione continua e ricerca per stare al passo con le minacce informatiche. In conclusione, la tesi supporta una strategia di difesa a più livelli che combina l'ADS-B con altri sistemi di sorveglianza per migliorare la sicurezza complessiva e l'efficacia operativa nell'aviazione. Questi approfondimenti suggeriscono un approccio faseato e strategico nell'implementazione dell'ADS-B, unito a continui aggiustamenti delle politiche e investimenti tecnologici, per creare un sistema di gestione del traffico aereo più sicuro ed efficiente.
ADS-B in context: A Comprehensive Threat Analysis
Ferrara, Alessandro
2023/2024
Abstract
Aviation is a crucial part of global connectivity, requiring high levels of safety and efficiency. Traditional radar systems used in air traffic control have limitations such as coverage gaps, lower resolution, and higher latency. To address these issues, the aviation industry has adopted Automatic Dependent Surveillance-Broadcast (ADS-B) technology. ADS-B uses satellite navigation to provide precise, real-time information about aircraft, potentially transforming air traffic management by improving efficiency and reducing congestion. However, ADS-B’s openness has raised significant concerns about cybersecurity threats, including eavesdropping, message deletion, and message injection. Most existing studies look at ADS-B in isolation, ignoring its operation within a larger network of aviation systems. This thesis reevaluates the perceived vulnerabilities of ADS-B by considering its integration with other key aviation safety systems, such as the Traffic Collision Avoidance System (TCAS) and Primary and Secondary Surveillance Radars (PSR and SSR). By reassessing the conventional threat models with this broader perspective, the research finds that the risks associated with ADS-B are often overstated. Key findings suggest that while eavesdropping remains a consistent threat due to the open nature of ADS-B, the likelihood and impact of message deletion and injection are greatly reduced when ADS-B is used alongside other systems. This is due to the resilience and redundancy provided by these integrated systems. The study recommends maintaining multiple systems to ensure safety, investing in advanced technologies to resist interference, and providing continuous training and research to stay ahead of cybersecurity threats. In conclusion, the thesis supports a multi-layered defense strategy that combines ADS-B with other surveillance systems to enhance overall security and operational effectiveness in aviation. These insights suggest a phased and strategic approach to implementing ADS-B, coupled with ongoing policy adjustments and technological investments, to create a safer and more efficient air traffic management system.File | Dimensione | Formato | |
---|---|---|---|
Aviation-7.pdf
accessibile in internet per tutti
Dimensione
516.74 kB
Formato
Adobe PDF
|
516.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222642