Ion Exchange Resins (IERs) are organic materials used for effluent decontamination in nuclear power plants. Their management always posed problems because of their organic nature, particularly the incompatibility with encapsulation matrices. This thesis work proposes an innovative management of spent anionic and cationic IERs through an integrated approach: a treatment by a heterogeneous Fenton-like wet oxidation to decompose the organic content followed by an encapsulation of the residues into geopolymeric matrices. Compared to other degradation techniques, a Fenton process has a simple concept and can be carried out at ambient temperature and pressure without special equipment, combined with the availability of the reagents (H2O2 and a ferrous catalyst). To stress the circular economy potentiality an industrial waste such as Fly Ash (FA) is used as catalyst. Tests with 20 g and 100 g of IERs were conducted to optimize the reagents amounts, initial temperature and pH. Octanol and tributyl phosphate were identified as effective foam controlling agents required for the foam issues arose from anionic resin degradation. Surrogate waste was prepared by loading IERs with stable contaminants such as Co, Ni, Sr, Cs, La, B to simulate the real waste. Two geopolymeric matrices were used for encapsulating the treated residues. They are based on volcanic tuff (GP1) and metakaolin (MK) and contain industrial by-products (FA and blast furnace slag) to pursue the circular economy. The integrated approach allowed to obtain wasteforms loaded with 10% and 15% of treated resin, but higher volume reductions are promising to be tested by increasing the loading factor. Samples with direct encapsulation of IERs failed the compression tests, while the ones derived from the integrated approach were successful, both in terms of mechanical properties and resistance towards contaminants leaching. Testing the matrices towards other waste acceptance criteria as well as further optimizations of the oxidative treatment will be addressed to better perform this integrated management of spent IERs.
Le Resine a Scambio Ionico (RSI) sono materiali organici usati per decontaminare le effluenti delle centrali nucleari. La loro gestione ha sempre dato problemi a causa della loro natura organica che le rende incompatibili con le matrici di incapsulamento. Questo progetto di tesi propone una gestione innovativa di RSI anioniche e cationiche esauste attraverso un processo integrato: un trattamento ossidativo ad umido di tipo Fenton eterogeneo per decomporne la componente organica seguito dall’incapsulamento dei residui in matrici geopolimeriche. Un processo Fenton rispetto ad altre tecnologie è di facile applicazione: può essere condotto a temperature e pressioni ambiente senza l’utilizzo di attrezzatura complessa e sfrutta reagenti altamente reperibili (H2O2 e un catalizzatore ferroso). Per questo progetto si è proposto il riutilizzo di un rifiuto industriale quale cenere volante come catalizzatore. 20 g e 100 g di RSI sono stati degradati variando le quantità dei reagenti e temperatura e pH iniziali. Ottanolo e tributil fosfato sono stati adoperati con successo per gestire la produzione di schiuma derivante dalla degradazione della resina anionica. Le resine sono state inoltre caricate con contaminanti per simulare un rifiuto nucleare reale. I residui provenienti dal trattamento sono stati poi incapsulati in due matrici geopolimeriche, una con tufo vulcanico e una con metacaolino: entrambe presentano anche sottoprodotti industriali nell'ottica di condurre un’economia circolare. Questo approccio integrato ha permesso di caricare le matrici con il 10% e il 15% di resine trattate, maggiori caricamenti futuri permetteranno di ridurre i volumi finali. L’incapsulamento diretto di resine non trattate ha prodotto risultati fallimentari per quanto riguarda la resistenza a compressione, mentre i manufatti con resine trattate hanno avuto risultati eccellenti sia per resistenza meccanica che a lisciviazione dei contaminanti. Ulteriori studi sono necessari per migliorare la strategia integrata, ottimizzando e validando il trattamento ossidativo ed il condizionamento dei residui, nell’ottica di una possibile implementazione industriale futura.
Integrated management of mixed bed resins by heterogeneous wet oxidation treatment and geopolymer conditioning
Monti, Marco
2023/2024
Abstract
Ion Exchange Resins (IERs) are organic materials used for effluent decontamination in nuclear power plants. Their management always posed problems because of their organic nature, particularly the incompatibility with encapsulation matrices. This thesis work proposes an innovative management of spent anionic and cationic IERs through an integrated approach: a treatment by a heterogeneous Fenton-like wet oxidation to decompose the organic content followed by an encapsulation of the residues into geopolymeric matrices. Compared to other degradation techniques, a Fenton process has a simple concept and can be carried out at ambient temperature and pressure without special equipment, combined with the availability of the reagents (H2O2 and a ferrous catalyst). To stress the circular economy potentiality an industrial waste such as Fly Ash (FA) is used as catalyst. Tests with 20 g and 100 g of IERs were conducted to optimize the reagents amounts, initial temperature and pH. Octanol and tributyl phosphate were identified as effective foam controlling agents required for the foam issues arose from anionic resin degradation. Surrogate waste was prepared by loading IERs with stable contaminants such as Co, Ni, Sr, Cs, La, B to simulate the real waste. Two geopolymeric matrices were used for encapsulating the treated residues. They are based on volcanic tuff (GP1) and metakaolin (MK) and contain industrial by-products (FA and blast furnace slag) to pursue the circular economy. The integrated approach allowed to obtain wasteforms loaded with 10% and 15% of treated resin, but higher volume reductions are promising to be tested by increasing the loading factor. Samples with direct encapsulation of IERs failed the compression tests, while the ones derived from the integrated approach were successful, both in terms of mechanical properties and resistance towards contaminants leaching. Testing the matrices towards other waste acceptance criteria as well as further optimizations of the oxidative treatment will be addressed to better perform this integrated management of spent IERs.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Monti_02.pdf
non accessibile
Descrizione: Executive summary dell'elaborato di tesi
Dimensione
5.89 MB
Formato
Adobe PDF
|
5.89 MB | Adobe PDF | Visualizza/Apri |
2024_07_Monti_01.pdf
non accessibile
Descrizione: Elaborato di tesi magistrale
Dimensione
45.05 MB
Formato
Adobe PDF
|
45.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222719