Radioactive liquid organic waste (RLOW) presents significant challenges in pre-disposal management due to its chemical, physical, and radiological properties. Traditional treatment methods, aimed at destroying the organic component and reducing the waste volume to obtain an inorganic residue suitable for conditioning in cementitious matrices, are expensive and generate secondary waste, including potentially contaminated effluents. Therefore, an alternative strategy consisting of the direct conditioning of RLOW in inert matrices has been investigated, eliminating the need for pre-treatment. This thesis work, part of the H2020-PREDIS project, investigated the direct immobilization of RLOW in sustainable geopolymeric matrices. The research focused on low-viscosity RLOW, such as spent reprocessing solvent, because they are particularly challenging to incorporate into inorganic matrices without running into phase separation. To simulate the real lowviscosity RLOW, a mixture of Tri-Butyl Phosphate and Kerosene was used. According to previous studies, a metakaolin-based geopolymer has been tested in this work, since it proved to be the most promising in successfully encapsulating 30% by volume of waste. Downsides of such formulation are the need of a surfactant, required to achieve waste incorporation, and instability during immersion. The thesis has two main objectives: the identification of an alternative additive that allows direct encapsulation of low viscosity RLOW without resorting to surfactants; the improvement of matrix formulation, to ensure immersion resistance. A surfactant-free optimized formulation employing industrial by-products and inert aggregates was developed and showed excellent mechanical, immersion and leaching resistance according to waste acceptance criteria. Also, the setting time, workability and robustness of the new formulation were assessed to prove the feasibility of future industrial application. Other tests will be necessary to further optimize the formulation and to evaluate its longterm durability, e.g. after irradiation and thermal cycling.
I rifiuti liquidi organici radioattivi (RLOW) presentano una gestione complessa a causa delle loro proprietà chimiche, fisiche e radiologiche. I metodi di trattamento tradizionali, finalizzati alla distruzione della componente organica e alla riduzione del volume dei rifiuti per ottenere un residuo inorganico adatto al condizionamento in matrici cementizie, sono costosi e generano rifiuti secondari, inclusi potenziali effluenti contaminati. È stata studiata una strategia alternativa che consiste nel condizionamento diretto dei RLOW in matrici inerti con loro compatibili, senza pre-trattamento. Questa tesi, nell’ambito del progetto H2020-PREDIS, ha investigato l’immobilizzazione diretta dei RLOW in matrici geopolimeriche. La ricerca si è concentrata su RLOW a bassa viscosità, come il solvente usato nel riprocessamento del combustibile esausto, poiché sono particolarmente difficili da incorporare nelle matrici senza smiscelare. Per simulare i RLOW reali a bassa viscosità, è stata utilizzata una miscela di tributilfosfato e kerosene. In precedenti studi è stato testato un geopolimero a base di metacaolino, che si è rivelato il più promettente nell’incapsulare il 30% in volume di rifiuto. Gli svantaggi di tale formulazione sono la necessità di un tensioattivo e l’instabilità durante l’immersione. La tesi ha due obiettivi principali: l’identificazione di un additivo alternativo che permetta l’incapsulamento diretto di RLOW a bassa viscosità senza ricorrere a tensioattivi; il miglioramento della formulazione della matrice, che ne garantisca la resistenza all’immersione. È stata sviluppata una formulazione ottimizzata senza tensioattivi che utilizza sottoprodotti industriali e aggregati inerti, la quale ha mostrato eccellenti proprietà meccaniche, resistenza all’immersione e alla lisciviazione secondo i criteri di accettazione dei rifiuti. Inoltre, sono stati valutati il tempo di presa, la lavorabilità e la robustezza della nuova formulazione per dimostrare la fattibilità di future applicazioni industriali. Saranno necessari ulteriori test per ottimizzarla ulteriormente e valutarne la resistenza sul lungo periodo, e.g. dopo irraggiamento e cicli termici.
Improving the direct conditioning of low-viscosity radioactive liquid organic waste in geopolymers: a durability and robustness study
Sarti, Gabriele
2023/2024
Abstract
Radioactive liquid organic waste (RLOW) presents significant challenges in pre-disposal management due to its chemical, physical, and radiological properties. Traditional treatment methods, aimed at destroying the organic component and reducing the waste volume to obtain an inorganic residue suitable for conditioning in cementitious matrices, are expensive and generate secondary waste, including potentially contaminated effluents. Therefore, an alternative strategy consisting of the direct conditioning of RLOW in inert matrices has been investigated, eliminating the need for pre-treatment. This thesis work, part of the H2020-PREDIS project, investigated the direct immobilization of RLOW in sustainable geopolymeric matrices. The research focused on low-viscosity RLOW, such as spent reprocessing solvent, because they are particularly challenging to incorporate into inorganic matrices without running into phase separation. To simulate the real lowviscosity RLOW, a mixture of Tri-Butyl Phosphate and Kerosene was used. According to previous studies, a metakaolin-based geopolymer has been tested in this work, since it proved to be the most promising in successfully encapsulating 30% by volume of waste. Downsides of such formulation are the need of a surfactant, required to achieve waste incorporation, and instability during immersion. The thesis has two main objectives: the identification of an alternative additive that allows direct encapsulation of low viscosity RLOW without resorting to surfactants; the improvement of matrix formulation, to ensure immersion resistance. A surfactant-free optimized formulation employing industrial by-products and inert aggregates was developed and showed excellent mechanical, immersion and leaching resistance according to waste acceptance criteria. Also, the setting time, workability and robustness of the new formulation were assessed to prove the feasibility of future industrial application. Other tests will be necessary to further optimize the formulation and to evaluate its longterm durability, e.g. after irradiation and thermal cycling.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Sarti_01.pdf
non accessibile
Descrizione: Elaborato tesi
Dimensione
34.52 MB
Formato
Adobe PDF
|
34.52 MB | Adobe PDF | Visualizza/Apri |
2024_07_Sarti_02.pdf
non accessibile
Descrizione: Executive Summary della tesi
Dimensione
628.8 kB
Formato
Adobe PDF
|
628.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222720