Fluorescence spectroscopy has become a pivotal tool in a wide array of fields, such as medicine, biology, art conservation, materials science, astronomy and physics. This broad applicability has driven significant advancements in X-ray source technology, leading to the development of sources that produce highly intense and focused beams. To capture intricate details of chemical structures, it is essential to gather extensive information rapidly. Consequently, the speed of detector acquisition has emerged as a critical limiting factor. There is a growing demand for radiation detectors that deliver superior perfor mance in both energy resolution and counting capability, keeping pace with technological innovations. X-ray fluorescence microscopy (XFM) exemplifies this need, as it allows for the detection and visualization of sub-micron particles within samples. XFM can reveal details on a spatial scale from several centimeters down to the size of the focused X-ray beam, which can be as small as a few tens of nm. Conducting such detailed measurements necessitates the ability to acquire images with around 108 pixels within a few hours. To meet these scanning speed requirements, adequate counting statistics must be achieved, necessitating acquisition rates of approximately 10 million counts per second (Mcps). In response to these demands, the ASCANIO project (Annular SDD Configuration for Advanced Nano Imaging and Observation) was initiated. ASCANIO is a 16-channel spec trometer designed for X-ray fluorescence experiments and XFM imaging at synchrotron beamlines. Developed in collaboration with the Deutsches Elektronen-Synchrotron (DESY), this spectrometer utilizes tilted Silicon Drift Detectors (SDDs) in a backscattering geom etry. This configuration allows the X-ray beam to pass through the instrument placed downstream of the sample. The tilted SDDs ensure an even distribution of fluorescence light across the detector pixels, achieving a solid angle of 1 sr at an 8 mm distance from the sample. Furthermore, ASCANIO can attain an Output Count Rate (OCR) exceeding 20 Mcps while maintaining excellent energy resolution, with values below 200 eV for short peak times (around 32 ns). This high performance is supported by a specialized cooling system and low-noise front-end electronics. This thesis is organized in the following manner: • Chapter 1: crucial aspects such as the principles governing X-ray sources, their interaction dynamics with matter and absorption phenomena in various materials are introduced in order to provide a solid background for the ASCANIO project. The chapter also focuses on essential X-ray spectroscopy techniques and provides a concise analysis of the signal processing chain used in spectrometers. • Chapter 2: the chapter begins by exploring the working principle of the ASCANIO spectrometer, offering a comprehensive perspective on its advanced technology, an ticipated advancements and diverse applications. It then shifts focus to a detailed investigation aimed at optimizing solid angle efficiency through careful examination of optimal tilt angles and their impact on overall performance. Finally, the chapter concludes by emphasizing the operating principle of SDDs. • Chapter 3: the final mechanics of the instrument is described, specifying the func tion of its various components and the dimensions that come into play. Subse quently, the cooling system is detailed, outlining the various adopted materials and the reasons behind their selection. • Chapter 4: this chapter focuses on ASCANIO’s electronics. A summary of the previously developed instrument board is provided, explaining the function of each stage and the flexible board. After that, the module board is described along with its new version developed during this thesis work, specifying the improvements achieved in terms of modules characterization and the materials used. • Chapter 5: this chapter discusses the conducted measurements, explaining the assembled setup and comparing its performance with another setup. Subsequently, it presents the characterization of the SDDs along with their collimation, highlight ing the encountered challenges and the possible solutions to address them from a physics standpoint. • Chapter 6: the concluding chapter encapsulates the key advancements achieved in the ASCANIO project throughout this master’s thesis. Additionally, it outlines prospective avenues for further development and enhancement following the current research efforts.
La spettroscopia di fluorescenza è diventata uno strumento fondamentale in una vasta gamma di campi, tra cui medicina, biologia, conservazione dell’arte, scienza dei materiali, astronomia e fisica. Questa ampia applicabilità ha guidato significativi progressi nella tecnologia delle sorgenti di raggi X, portando allo sviluppo di sorgenti capaci di produrre fasci intensi e focalizzati. Per catturare dettagli intricati delle strutture chimiche, è essenziale raccogliere rapidamente informazioni estensive. Di conseguenza, la velocità di acquisizione dei rilevatori è emersa come un fattore limitante critico. C’è una crescente domanda di rilevatori di radiazioni che offrano prestazioni superiori nella risoluzione energetica e nella capacità di conteggio, mantenendo il passo con le innovazioni tecnologiche. La microscopia a fluorescenza a raggi X (XFM) rappresenta un esempio di questa necessità, in quanto consente il rilevamento e la visualizzazione di particelle sub-micrometriche all’interno di campioni. L’XFM può rivelare dettagli su una scala spaziale che va da diversi centimetri fino alle dimensioni del raggio X focalizzato, che possono essere ridotte fino a poche decine di nm. Condurre misurazioni così dettagliate richiede la capacità di acquisire immagini con circa 108 pixel in poche ore. Per soddisfare questi requisiti di velocità di scansione, è necessario ottenere statistiche di conteggio adeguate, con velocità di acquisizione di circa 10 milioni di conteggi al secondo (Mcps). In risposta a queste esigenze, è stato avviato il progetto ASCANIO (Annular SDD Con figuration for Advanced Nano Imaging and Observation). ASCANIO è uno spettrometro a 16 canali progettato per esperimenti di fluorescenza a raggi X e per l’imaging XFM presso le linee di fascio dei sincrotroni. Sviluppato in collaborazione con il Deutsches Elektronen-Synchrotron (DESY), questo spettrometro utilizza rilevatori a deriva di silicio inclinati (SDD) in una geometria di retrodiffusione. Questa configurazione permette al fascio di raggi X di attraversare lo strumento posizionato a valle del campione. Gli SDD inclinati assicurano una distribuzione uniforme della luce di fluorescenza sui pixel del rilevatore, ottenendo un angolo solido di 1 sr a una distanza di 8 mm dal campione. Inoltre, ASCANIO può raggiungere un tasso di conteggio di uscita (OCR) superiore a 20 Mcps mantenendo un’eccellente risoluzione energetica, con valori inferiori a 200 eV per tempi di picco brevi (circa 32 ns). Queste alte prestazioni sono supportate da un sistema di raffreddamento specializzato e da elettroniche di front-end a basso rumore. La tesi è strutturata come segue: • Capitolo 1: vengono introdotti aspetti cruciali come i principi che governano le sorgenti di raggi X, la loro dinamica di interazione con la materia e i fenomeni di assorbimento in vari materiali al fine di fornire una solida base per il progetto ASCANIO. Il capitolo si concentra anche sulle tecniche essenziali di spettroscopia a raggi X e fornisce un’analisi concisa della catena di elaborazione del segnale utilizzata negli spettrometri. • Capitolo 2: il capitolo inizia esplorando il principio di funzionamento dello spettrometro ASCANIO, offrendo una prospettiva completa sulla sua tecnologia avanzata, sui progressi previsti e sulle diverse applicazioni. Successivamente, si concentra su un’indagine dettagliata mirata all’ottimizzazione dell’efficienza dell’angolo solido attraverso un esame attento degli angoli di inclinazione ottimali e del loro impatto sulle prestazioni complessive. Infine, viene sottolineato il ruolo cruciale dei rilevatori a deriva di silicio all’interno del sistema ASCANIO. • Capitolo 3: vengono descritte le meccaniche finali dello strumento, specificando la funzione dei vari componenti e le dimensioni che entrano in gioco. Successivamente, viene dettagliato il sistema di raffreddamento, delineando i vari materiali adottati e le ragioni della loro selezione. • Capitolo 4: questo capitolo si concentra sull’elettronica di ASCANIO. Viene fornito un riassunto della scheda strumentale precedentemente sviluppata, spiegando la funzione di ogni stadio e della scheda flessibile. Dopodiché, viene descritta la scheda modulo insieme alla sua nuova versione sviluppata durante il lavoro di tesi, specificando i miglioramenti ottenuti in termini di caratterizzazione dei moduli e accennando ai diversi materiali utilizzati. • Capitolo 5: questo capitolo discute le misurazioni effettuate, spiegando l’apparato sperimentale assemblato e confrontando le sue prestazioni con un altro setup. Successivamente, presenta la caratterizzazione dei SDD (Silicon Drift Detectors) insieme alla loro collimazione, evidenziando le sfide incontrate e le ipotesi formulate dal punto di vista fisico. • Capitolo 6: il capitolo conclusivo riassume i principali progressi raggiunti nel progetto ASCANIO durante questa tesi magistrale. Inoltre, illustra le possibili strade future per lo sviluppo e il potenziamento seguendo gli sforzi di ricerca attuali.
Characterization of ASCANIO: Annular SDD configuration for Advanced Nano Imaging and Observation
Lerose, Marco
2023/2024
Abstract
Fluorescence spectroscopy has become a pivotal tool in a wide array of fields, such as medicine, biology, art conservation, materials science, astronomy and physics. This broad applicability has driven significant advancements in X-ray source technology, leading to the development of sources that produce highly intense and focused beams. To capture intricate details of chemical structures, it is essential to gather extensive information rapidly. Consequently, the speed of detector acquisition has emerged as a critical limiting factor. There is a growing demand for radiation detectors that deliver superior perfor mance in both energy resolution and counting capability, keeping pace with technological innovations. X-ray fluorescence microscopy (XFM) exemplifies this need, as it allows for the detection and visualization of sub-micron particles within samples. XFM can reveal details on a spatial scale from several centimeters down to the size of the focused X-ray beam, which can be as small as a few tens of nm. Conducting such detailed measurements necessitates the ability to acquire images with around 108 pixels within a few hours. To meet these scanning speed requirements, adequate counting statistics must be achieved, necessitating acquisition rates of approximately 10 million counts per second (Mcps). In response to these demands, the ASCANIO project (Annular SDD Configuration for Advanced Nano Imaging and Observation) was initiated. ASCANIO is a 16-channel spec trometer designed for X-ray fluorescence experiments and XFM imaging at synchrotron beamlines. Developed in collaboration with the Deutsches Elektronen-Synchrotron (DESY), this spectrometer utilizes tilted Silicon Drift Detectors (SDDs) in a backscattering geom etry. This configuration allows the X-ray beam to pass through the instrument placed downstream of the sample. The tilted SDDs ensure an even distribution of fluorescence light across the detector pixels, achieving a solid angle of 1 sr at an 8 mm distance from the sample. Furthermore, ASCANIO can attain an Output Count Rate (OCR) exceeding 20 Mcps while maintaining excellent energy resolution, with values below 200 eV for short peak times (around 32 ns). This high performance is supported by a specialized cooling system and low-noise front-end electronics. This thesis is organized in the following manner: • Chapter 1: crucial aspects such as the principles governing X-ray sources, their interaction dynamics with matter and absorption phenomena in various materials are introduced in order to provide a solid background for the ASCANIO project. The chapter also focuses on essential X-ray spectroscopy techniques and provides a concise analysis of the signal processing chain used in spectrometers. • Chapter 2: the chapter begins by exploring the working principle of the ASCANIO spectrometer, offering a comprehensive perspective on its advanced technology, an ticipated advancements and diverse applications. It then shifts focus to a detailed investigation aimed at optimizing solid angle efficiency through careful examination of optimal tilt angles and their impact on overall performance. Finally, the chapter concludes by emphasizing the operating principle of SDDs. • Chapter 3: the final mechanics of the instrument is described, specifying the func tion of its various components and the dimensions that come into play. Subse quently, the cooling system is detailed, outlining the various adopted materials and the reasons behind their selection. • Chapter 4: this chapter focuses on ASCANIO’s electronics. A summary of the previously developed instrument board is provided, explaining the function of each stage and the flexible board. After that, the module board is described along with its new version developed during this thesis work, specifying the improvements achieved in terms of modules characterization and the materials used. • Chapter 5: this chapter discusses the conducted measurements, explaining the assembled setup and comparing its performance with another setup. Subsequently, it presents the characterization of the SDDs along with their collimation, highlight ing the encountered challenges and the possible solutions to address them from a physics standpoint. • Chapter 6: the concluding chapter encapsulates the key advancements achieved in the ASCANIO project throughout this master’s thesis. Additionally, it outlines prospective avenues for further development and enhancement following the current research efforts.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Lerose_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
40.17 MB
Formato
Adobe PDF
|
40.17 MB | Adobe PDF | Visualizza/Apri |
2024_07_Lerose.pdf
non accessibile
Descrizione: Thesis
Dimensione
107.04 MB
Formato
Adobe PDF
|
107.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222739