Gelled fuels are rheologically complex non-Newtonian fluids representing promising solutions for aerospace propulsion, in particular for airbreathing engines, due to their enhanced safety and advanced performance. Such fuels combine the benefits of both liquid and solid propellants, reducing risks of leakage, spilling, and sloshing during storage, while maintaining the ability to throttle and modulate the thrust. Additionally, the incorporation of suspended energetic particles, such as metal powders of aluminum and boron, can significantly enhance the energy density compared to liquid fuels. In this study, several new kerosene- and ethanol-based formulations were experimentally investigated using both organic and inorganic gelling agents. The compositions were optimized in terms of gellant amount and preparation procedures. Among the most promising gellants for kerosene were fatty acids as Thixcin R and Thixatrol ST, and metallic soaps, such as aluminum stearate and zinc stearate. Various co-solvents were assessed, including ketones (methyl isoamyl ketone, methyl ethyl ketone, and acetone) and alcohols (ethanol and octadecanol). Sugar polymers like hydroxy-propylcellulose were also tested as gelling agents for ethanol. A comprehensive rheological analysis was conducted to characterize their behavior at rest and under shear stress. Further, a novel approach was proposed to study gels response to storage and to a realistic flight condition, simulating the vibration profile during a ramjet mission. Finally, the ideal combustion performance was evaluated in terms of gravimetric specific impulse. Several promising formulations demonstrated excellent stability during storage and under vibration, good combustion efficiency, and pronounced shear-thinning properties, paving the way for practical use in airbreathing engines.
I combustibili gelificati sono fluidi non-Newtoniani reologicamente complessi, e rappresentano una promettente soluzione per applicazioni aerospaziali, in particolare per esoreattori, grazie alle maggiori prestazioni e sicurezza. Tali combustibili combinano i vantaggi di propellenti liquidi e solidi, riducendo il rischio di perdite, fuoriuscite e sloshing in fase di stoccaggio, pur mantenendo la possibilità di parzializzare e modulare la spinta. Inoltre, la sospensione di materiali energetici, quali polveri metalliche di alluminio o boro, può aumentare significativamente le prestazioni, rispetto ai tradizionali combustibili liquidi. Nel presente studio sono state investigate sperimentalmente diverse composizioni innovative a base di kerosene ed etanolo con agenti gelificanti di origine organica e inorganica. Le composizioni sono state ottimizzate in termini di quantità di gelificante e procedura di preparazione. Tra gli agenti gelificanti più promettenti per il kerosene, figurano acidi grassi come Thixcin R e Thixatrol ST, e sali metallici, quali stearati di alluminio e zinco. Diversi co-solventi sono stati studiati, tra cui chetoni (metil-isoamil chetone, metil-etil chetone) e composti alcolici (etanolo, octadecanolo). Alcuni polisaccaridi, tra cui l'idrossipropilcellulosa, sono invece stati testati per gelificare l'etanolo. Una vasta indagine reologica ha permesso di caratterizzare il comportamento dei gel, sia a riposo sia sotto sforzo di taglio. Inoltre, è stato proposto un innovativo metodo per indagare la risposta dei gel allo stoccaggio e ad una condizione di volo realistica, simulando un profilo di vibrazioni tipico di una missione ramjet. Infine, sono state quantificate le prestazioni teoriche, in termini di impulso specifico gravimetrico. Diverse formulazioni risultano promettenti, mostrando un'eccellente stabilità sia durante lo stoccaggio sia in vibrazione, delle elevate prestazioni propulsive e delle ottime proprietà reologiche, aprendo la strada ad un loro uso pratico in esoreattori.
Rheology and stability of hydrocarbon-based gelled fuels for airbreathing applications
Dell'Acqua, Simone;MORANDO, FRANCESCO
2023/2024
Abstract
Gelled fuels are rheologically complex non-Newtonian fluids representing promising solutions for aerospace propulsion, in particular for airbreathing engines, due to their enhanced safety and advanced performance. Such fuels combine the benefits of both liquid and solid propellants, reducing risks of leakage, spilling, and sloshing during storage, while maintaining the ability to throttle and modulate the thrust. Additionally, the incorporation of suspended energetic particles, such as metal powders of aluminum and boron, can significantly enhance the energy density compared to liquid fuels. In this study, several new kerosene- and ethanol-based formulations were experimentally investigated using both organic and inorganic gelling agents. The compositions were optimized in terms of gellant amount and preparation procedures. Among the most promising gellants for kerosene were fatty acids as Thixcin R and Thixatrol ST, and metallic soaps, such as aluminum stearate and zinc stearate. Various co-solvents were assessed, including ketones (methyl isoamyl ketone, methyl ethyl ketone, and acetone) and alcohols (ethanol and octadecanol). Sugar polymers like hydroxy-propylcellulose were also tested as gelling agents for ethanol. A comprehensive rheological analysis was conducted to characterize their behavior at rest and under shear stress. Further, a novel approach was proposed to study gels response to storage and to a realistic flight condition, simulating the vibration profile during a ramjet mission. Finally, the ideal combustion performance was evaluated in terms of gravimetric specific impulse. Several promising formulations demonstrated excellent stability during storage and under vibration, good combustion efficiency, and pronounced shear-thinning properties, paving the way for practical use in airbreathing engines.| File | Dimensione | Formato | |
|---|---|---|---|
|
Dell_Acqua_Morando_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
511.86 kB
Formato
Adobe PDF
|
511.86 kB | Adobe PDF | Visualizza/Apri |
|
Dell_Acqua_Morando_Thesis.pdf
non accessibile
Descrizione: Master's Thesis
Dimensione
6.21 MB
Formato
Adobe PDF
|
6.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222774