This research project explores an alternative technology to enhance bicycle helmet safety, as current standards, based on an EPS core and an ABS shell, are deemed insufficient by the scientific community. The lack of an effective mechanism to absorb energy from rotational impacts increases the risk of brain trauma. Some companies, such as MIPS, have developed solutions to mitigate this issue. Experimental tests were conducted on helmets representing the main technologies, following a proposed standard involving impacts on an angled anvil. The results led to the development of an innovative technology replacing the EPS core: inspired by the work of Franzosi P., auxetic lattice topologies were improved, particularly the planar anti-chiral made of Nylon PA12 and 3D printed with HP multijet fusion technology. Improvements include thermal treatments, joints between lattice ligaments, and geometric parameterization to optimize impact absorption. A helmet prototype based on these cells was tested and compared with commercial helmets. Additionally, an innovative external shell in flax fiber composite, as studied by Pinato E., was explored, with experimental and numerical tests conducted on the coupling between the shell and the core.
Questo progetto di ricerca esplora una tecnologia alternativa per migliorare la sicurezza dei caschi da bici, dato che gli standard attuali, basati su un core in EPS e una shell in ABS, sono ritenuti insufficienti dalla comunità scientifica. La mancanza di un meccanismo efficace per assorbire l’energia da impatti rotazionali aumenta il rischio di trauma cerebrale. Alcune aziende, come MIPS, hanno sviluppato soluzioni per mitigare questo problema. Sono stati condotti test sperimentali su caschi rappresentativi delle principali tecnologie, seguendo una possibile normativa che preveda impatti su un’incudine angolata. I risultati hanno portato allo sviluppo di una tecnologia innovativa che sostituisce il core in EPS: prendendo spunto dal lavoro di Franzosi P., sono state migliorate topologie auxetiche reticolari, in particolare la planare anti-chirale realizzata in Nylon PA12 e stampata in 3D con tecnologia multijet fusion HP. Le migliorie includono trattamenti termici, raccordi tra i legamenti del reticolo e una parametrizzazione geometrica per ottimizzare l’assorbimento degli impatti. Un prototipo di casco basato su queste celle è stato testato e confrontato con caschi in commercio. Inoltre, è stata esplorata una shell esterna innovativa in composito di fibra di lino, come studiato da Pinato E., con test sperimentali e numerici sull’accoppiamento tra shell e core.
Characterization and optimization of 3D printed core geometries in bicycle helmets for enhanced impact protection
Gelosi, Diego
2023/2024
Abstract
This research project explores an alternative technology to enhance bicycle helmet safety, as current standards, based on an EPS core and an ABS shell, are deemed insufficient by the scientific community. The lack of an effective mechanism to absorb energy from rotational impacts increases the risk of brain trauma. Some companies, such as MIPS, have developed solutions to mitigate this issue. Experimental tests were conducted on helmets representing the main technologies, following a proposed standard involving impacts on an angled anvil. The results led to the development of an innovative technology replacing the EPS core: inspired by the work of Franzosi P., auxetic lattice topologies were improved, particularly the planar anti-chiral made of Nylon PA12 and 3D printed with HP multijet fusion technology. Improvements include thermal treatments, joints between lattice ligaments, and geometric parameterization to optimize impact absorption. A helmet prototype based on these cells was tested and compared with commercial helmets. Additionally, an innovative external shell in flax fiber composite, as studied by Pinato E., was explored, with experimental and numerical tests conducted on the coupling between the shell and the core.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Gelosi.pdf
non accessibile
Dimensione
168.04 MB
Formato
Adobe PDF
|
168.04 MB | Adobe PDF | Visualizza/Apri |
2024_07_Gelosi_executive summary.pdf
non accessibile
Dimensione
7.69 MB
Formato
Adobe PDF
|
7.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222788