This study addresses the challenge of designing gaseous film cooling for rocket engines. Due to the limited amount of available data, the methodology for a precise design lacks of a clear, precise method for accurate design. In this study, we will attempt to draw an analogy with turbine exhaust gas (TEG) engines to address this issue. A comprehensive design of a realistic rocket engine using gaseous oxygen and gaseous hydrogen is developed, focusing on precise estimation methodologies for wall temperature and heat flux. A novel semi-empirical approach is introduced, yielding results that align closely with high-fidelity CFD analysis of non-premixed combustion under similar conditions. Using various turbulence models in a two-dimensional CFD framework, this research establishes accurate relationships for heat absorption and shape prediction of the gaseous layer. The semi-empirical model demonstrates a high match with the standard and realizable k-ε turbulence models, as well as the SST k-ω and transitional models. Notable discrepancies are observed with the RNG and standard k-ω models. This study provides a robust semi-empirical model applicable to different turbulence settings, offering advancements in the understanding and prediction of gaseous film cooling in rocket engines.

Questo studio affronta il dimensionamento accurato di un motore a razzo con raffreddamento a film gassoso. A causa della quantità limitata di dati disponibili, un’analogia con i motori a gas di scarico di turbina (TEG) è stata effettuata. Per ottenere dati consistenti, lo studio segue lo sviluppo del design completo di un motore a razzo ad ossigeno e idrogeno gassoso, concentrandosi sulle metodologie precise di stima della temperatura della parete e del flusso di calore. Un nuovo approccio semi-empirico è stato quindi introdotto, il quale ha prodotto risultati strettamente allineati con l’analisi CFD ad alta fedeltà in combustione non-premiscelata. Utilizzando vari modelli di turbolenza in un framework CFD bidimensionale, questa ricerca ha stabilito relazioni accurate per l’assorbimento del calore e la previsione della forma dello strato gassoso. Il modello semi-empirico ha dimostrato un’elevata corrispondenza con i modelli di turbolenza k-ε standard e k-ε realizzabile, nonché con i modelli SST k-ω e di transizione. Sono state osservate discrepanze con i modelli RNG e k-ω standard. Questo studio fornisce un modello semi-empirico applicabile a diverse impostazioni di turbolenza, offrendo avanzamenti nella comprensione e previsione del raffreddamento a film gassoso nei motori a razzo.

Gaseous film cooling on rocket engine: analysis using full-scale CFD and new semi-empirical models

Pellegrino, Alberto
2023/2024

Abstract

This study addresses the challenge of designing gaseous film cooling for rocket engines. Due to the limited amount of available data, the methodology for a precise design lacks of a clear, precise method for accurate design. In this study, we will attempt to draw an analogy with turbine exhaust gas (TEG) engines to address this issue. A comprehensive design of a realistic rocket engine using gaseous oxygen and gaseous hydrogen is developed, focusing on precise estimation methodologies for wall temperature and heat flux. A novel semi-empirical approach is introduced, yielding results that align closely with high-fidelity CFD analysis of non-premixed combustion under similar conditions. Using various turbulence models in a two-dimensional CFD framework, this research establishes accurate relationships for heat absorption and shape prediction of the gaseous layer. The semi-empirical model demonstrates a high match with the standard and realizable k-ε turbulence models, as well as the SST k-ω and transitional models. Notable discrepancies are observed with the RNG and standard k-ω models. This study provides a robust semi-empirical model applicable to different turbulence settings, offering advancements in the understanding and prediction of gaseous film cooling in rocket engines.
Guozhu, Liang
ING - Scuola di Ingegneria Industriale e dell'Informazione
16-lug-2024
2023/2024
Questo studio affronta il dimensionamento accurato di un motore a razzo con raffreddamento a film gassoso. A causa della quantità limitata di dati disponibili, un’analogia con i motori a gas di scarico di turbina (TEG) è stata effettuata. Per ottenere dati consistenti, lo studio segue lo sviluppo del design completo di un motore a razzo ad ossigeno e idrogeno gassoso, concentrandosi sulle metodologie precise di stima della temperatura della parete e del flusso di calore. Un nuovo approccio semi-empirico è stato quindi introdotto, il quale ha prodotto risultati strettamente allineati con l’analisi CFD ad alta fedeltà in combustione non-premiscelata. Utilizzando vari modelli di turbolenza in un framework CFD bidimensionale, questa ricerca ha stabilito relazioni accurate per l’assorbimento del calore e la previsione della forma dello strato gassoso. Il modello semi-empirico ha dimostrato un’elevata corrispondenza con i modelli di turbolenza k-ε standard e k-ε realizzabile, nonché con i modelli SST k-ω e di transizione. Sono state osservate discrepanze con i modelli RNG e k-ω standard. Questo studio fornisce un modello semi-empirico applicabile a diverse impostazioni di turbolenza, offrendo avanzamenti nella comprensione e previsione del raffreddamento a film gassoso nei motori a razzo.
File allegati
File Dimensione Formato  
2024_07_Pellegrino_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: Executive Summary on - Gaseous Film Cooling on Rocket Engine: Analysis using Full-Scale CFD and New Semi-Empirical Models
Dimensione 12.73 MB
Formato Adobe PDF
12.73 MB Adobe PDF Visualizza/Apri
2024_07_Pellegrino_Tesi.pdf

accessibile in internet per tutti

Descrizione: Master Thesis on - Gaseous Film Cooling on Rocket Engine: Analysis using Full-Scale CFD and New Semi-Empirical Models
Dimensione 51.23 MB
Formato Adobe PDF
51.23 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/222825