This master’s thesis investigates the operational functionality of a novel concrete pump system designed to transfer energy mechanically from an electric motor to the pistons, with the objective of improving energy efficiency and reducing environmental impact. Unlike conventional concrete pump systems, which rely on hydraulic mechanisms and internal combustion engines, this innovative approach seeks to minimize energy wastage and environmental pollutants. The research proposes an innovative motor control system to optimize the operation of the concrete pump. By integrating advanced technology and mechanical transmission through gears, the new system offers precise control over the piston’s movement. This enhanced control not only improves overall performance but also leads to significant reductions in energy consumption and emissions. Methodologically, the study conducts a comprehensive analysis of existing hydraulic and internal combustion energy-based systems, identifying areas for improvement. Through simulations and experimental validations, the effectiveness of the proposed motor control system in achieving energy savings and environmental sustainability is evaluated. Comparative studies between conventional and optimized systems highlights the potential for substantial enhancements in operational efficiency and environmental impact. The implementation of this innovative solution represents a significant advancement in motor control, leading to improved performance and sustainability. Notably, the elimination of hydraulic oil from the system operation marks a significant step towards a more eco-friendly construction practice. The insights derived from this thesis contribute valuable knowledge to the field of green technologies in construction machinery.
Questa tesi di laurea magistrale studia la funzionalità operativa di un nuovo sistema di pompe per calcestruzzo progettato per trasferire l’energia meccanicamente da un motore elettrico ai pistoni, con l’obiettivo di migliorare l’efficienza energetica e ridurre l’impatto ambientale. A differenza dei sistemi convenzionali di pompe per calcestruzzo, che si basano su meccanismi idraulici e motori a combustione interna, questo approccio innovativo cerca di ridurre al minimo gli sprechi di energia e gli inquinanti ambientali. Integrando una tecnologia avanzata e una trasmissione meccanica a ingranaggi, il nuovo sistema offre un controllo preciso del movimento del pistone. Questo controllo potenziato non solo migliora le prestazioni complessive, ma porta anche a una significativa riduzione del consumo energetico e delle emissioni. Dal punto di vista metodologico, lo studio conduce un’analisi completa degli attuali sistemi idraulici e a combustione interna basati sull’energia, identificando le aree di miglioramento. Attraverso simulazioni e convalide sperimentali, viene valutata l’efficacia del sistema di controllo dei motori proposto per ottenere risparmi energetici e sostenibilità ambientale. Gli studi comparativi tra i sistemi convenzionali e quelli ottimizzati evidenziano il potenziale di sostanziale miglioramento dell’efficienza operativa e dell’impatto ambientale. L’implementazione di questa soluzione innovativa rappresenta un progresso significativo nel controllo dei motori, che porta a un miglioramento delle prestazioni e della sostenibilità. In particolare, l’eliminazione dell’olio idraulico dal funzionamento del sistema segna un passo significativo verso una pratica costruttiva più ecologica. Le intuizioni derivate da questa tesi contribuiscono a fornire conoscenze preziose nel campo delle tecnologie verdi per le macchine da costruzione.
Innovative propulsion transmission for enhanced efficiency and sustainability in concrete pumping systems
ZANNIER DIAZ, JUAN JOSE
2023/2024
Abstract
This master’s thesis investigates the operational functionality of a novel concrete pump system designed to transfer energy mechanically from an electric motor to the pistons, with the objective of improving energy efficiency and reducing environmental impact. Unlike conventional concrete pump systems, which rely on hydraulic mechanisms and internal combustion engines, this innovative approach seeks to minimize energy wastage and environmental pollutants. The research proposes an innovative motor control system to optimize the operation of the concrete pump. By integrating advanced technology and mechanical transmission through gears, the new system offers precise control over the piston’s movement. This enhanced control not only improves overall performance but also leads to significant reductions in energy consumption and emissions. Methodologically, the study conducts a comprehensive analysis of existing hydraulic and internal combustion energy-based systems, identifying areas for improvement. Through simulations and experimental validations, the effectiveness of the proposed motor control system in achieving energy savings and environmental sustainability is evaluated. Comparative studies between conventional and optimized systems highlights the potential for substantial enhancements in operational efficiency and environmental impact. The implementation of this innovative solution represents a significant advancement in motor control, leading to improved performance and sustainability. Notably, the elimination of hydraulic oil from the system operation marks a significant step towards a more eco-friendly construction practice. The insights derived from this thesis contribute valuable knowledge to the field of green technologies in construction machinery.File | Dimensione | Formato | |
---|---|---|---|
2024_07_ZannierDiaz_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary of the Thesis Document
Dimensione
959.38 kB
Formato
Adobe PDF
|
959.38 kB | Adobe PDF | Visualizza/Apri |
2024_07_ZannierDiaz_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis Document
Dimensione
7.48 MB
Formato
Adobe PDF
|
7.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222876