As interest in carbon capture grows, Capsol Technologies ASA clients are increasingly seeking efficient CO2 conditioning solutions. This thesis aims to develop, optimize, and analyze the CO2 conditioning process. Initially, conventional liquefaction processes, such as the Joule-Thomson and refrigeration cycles using three different refrigerants, were studied. NH3 refrigeration showed the lowest energy consumption. New configurations were developed to match Capsol's technology low energy profile, including refrigeration with flash and an innovative dual refrigeration cycle. The most efficient process was refrigeration with flashes using NH3, consuming 0.357 GJ/tCO2. The dual refrigeration cycle, with slightly higher energy consumption, offered nearly double the energy supply to the carbon capture plant and was further optimized by adjusting CO2 condensation pressure, reducing energy use by 2-5% and providing the lowest energy consumption across all configurations of 0.348 GJ/tCO2 when using propane as refrigerant. Ammonia proved to be the most energy-efficient refrigerant, while CO2, though higher in energy demand, provided the most heat to district or process plants. The Joule-Thomson process, at 0.49 GJ/tCO2, produces sufficient heat for the capture plant reboiler. At low cooling water temperatures, all configurations had comparable energy consumption, but at higher temperatures, optimized configurations like with flashes or dual refrigeration cycles became necessary. A statistical analysis using Stat Ease 360 software was conducted to understand the impact of different variables. The input variables matrix provided by Stat Ease 360 were simulated in an automated HYSYS-Excel interface, and the results were used to calculate performance criteria. The statistical analysis revealed a strong dependency of performance criteria on the cooling water temperature, followed by inlet flow rate, pressure, and inlet water content, providing valuable correlations for predicting key metrics in CO2 conditioning processes.
Con l'aumento dell'interesse per la cattura del carbonio, i clienti di Capsol Technologies cercano soluzioni efficienti per il condizionamento della CO2. Questa tesi mira a sviluppare e ottimizzare il processo di condizionamento della CO2, studiando processi di liquefazione convenzionali come il ciclo Joule-Thomson e cicli di refrigerazione con diversi refrigeranti. La refrigerazione con NH3 ha mostrato il consumo energetico più basso. Nuove configurazioni, come la refrigerazione con flash e un ciclo a doppia refrigerazione, sono state sviluppate per migliorare l'efficienza energetica. La refrigerazione con flash con NH3 ha registrato un consumo di 0,357 GJ/tCO2, mentre il doppio ciclo di refrigerazione ha offerto quasi il doppio dell'energia per l'impianto di cattura, con un consumo ottimizzato di 0,348 GJ/tCO2 utilizzando il propano. L'ammoniaca è risultata il refrigerante più efficiente, mentre la CO2, pur richiedendo più energia, ha fornito maggior calore agli impianti. Il processo Joule-Thomson, con 0,49 GJ/tCO2, produce abbastanza calore per il ribollitore dell'impianto di cattura. A basse temperature dell'acqua di raffreddamento, tutte le configurazioni hanno un consumo energetico simile, ma a temperature più alte sono necessarie configurazioni ottimizzate. Un'analisi statistica con Stat Ease 360 ha mostrato una forte dipendenza dei criteri di prestazione dalla temperatura dell'acqua di raffreddamento, seguita dalla portata, pressione e contenuto di acqua in ingresso, fornendo correlazioni preziose per prevedere metriche chiave nei processi di condizionamento della CO2.
Simulation-based optimization and multidimensional sensitivity analysis of CO2 conditioning processes with heat integration
Bellahcen, Souraya
2023/2024
Abstract
As interest in carbon capture grows, Capsol Technologies ASA clients are increasingly seeking efficient CO2 conditioning solutions. This thesis aims to develop, optimize, and analyze the CO2 conditioning process. Initially, conventional liquefaction processes, such as the Joule-Thomson and refrigeration cycles using three different refrigerants, were studied. NH3 refrigeration showed the lowest energy consumption. New configurations were developed to match Capsol's technology low energy profile, including refrigeration with flash and an innovative dual refrigeration cycle. The most efficient process was refrigeration with flashes using NH3, consuming 0.357 GJ/tCO2. The dual refrigeration cycle, with slightly higher energy consumption, offered nearly double the energy supply to the carbon capture plant and was further optimized by adjusting CO2 condensation pressure, reducing energy use by 2-5% and providing the lowest energy consumption across all configurations of 0.348 GJ/tCO2 when using propane as refrigerant. Ammonia proved to be the most energy-efficient refrigerant, while CO2, though higher in energy demand, provided the most heat to district or process plants. The Joule-Thomson process, at 0.49 GJ/tCO2, produces sufficient heat for the capture plant reboiler. At low cooling water temperatures, all configurations had comparable energy consumption, but at higher temperatures, optimized configurations like with flashes or dual refrigeration cycles became necessary. A statistical analysis using Stat Ease 360 software was conducted to understand the impact of different variables. The input variables matrix provided by Stat Ease 360 were simulated in an automated HYSYS-Excel interface, and the results were used to calculate performance criteria. The statistical analysis revealed a strong dependency of performance criteria on the cooling water temperature, followed by inlet flow rate, pressure, and inlet water content, providing valuable correlations for predicting key metrics in CO2 conditioning processes.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Bellahcen_Thesis_01.pdf
non accessibile
Descrizione: Thesis Manuscript
Dimensione
27.39 MB
Formato
Adobe PDF
|
27.39 MB | Adobe PDF | Visualizza/Apri |
2024_07_Bellahcen_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222881