This thesis addresses the development of models of the dynamics and control strategy in the context of NASA's Venus Aerial Robotic Balloon system development. The objectives of this work are to develop a control strategy that enables the antenna, mounted on the gondola, to point toward and track an inertial target, and to gain crucial insights into the dynamics of the balloon-gondola-antenna system. Within the framework of Venus Aerobot mission, this research is significant as it addresses the importance of controlling instruments positioned on the gondola, thereby paving the way for further investigation. Thus, a mathematical model of the balloon-gondola-antenna system is developed to capture the system's dynamics, forming the basis for designing and validating the control strategy through simulations carried out in Matlab. Grounded in a comprehensive literature review, this research implements a two-step control strategy, employing a Linear Quadratic Regulator (LQR) to stabilize the motion of the gondola, as an intermediate step for the subsequent phase, which utilizes a Proportional-Integral-Derivative (PID) to enable the control of the antenna's line of sight. Furthermore, the results demonstrate that the combined LQR and PID control strategy effectively meet the performance requirements, highlighting the importance of stabilizing the gondola platform to enhance antenna performance. Additionally, the results suggest the need for a deeper analysis of potential couplings between balloon and gondola dynamics. In conclusion, the insights gained from this study advance the understanding of active control strategies for aerial platforms with instrumented gondola operating in the challenging conditions of Venus, thereby laying the groundwork for future informed design decisions by the team.
Questa tesi affronta lo sviluppo di modelli dinamici e di strategie di controllo nel contesto dello sviluppo del sistema Venus Aerial Robotic Balloon della NASA. Gli obiettivi di questo lavoro sono sviluppare una strategia di controllo che permetta all'antenna, montata sulla gondola, di puntare e seguire un bersaglio inerziale, e acquisire conoscenze fondamentali sulla dinamica del sistema pallone-gondola-antenna. Nel contesto della missione Venus Aerobot, questo lavoro è significativo poiché affronta l'importanza del controllo degli strumenti posizionati sulla gondola, aprendo così la strada ad ulteriori indagini. Pertanto, è stato sviluppato un modello matematico del sistema pallone-gondola-antenna per comprendere appieno la dinamica del sistema, e che costituisce la base per progettare e validare la strategia di controllo tramite simulazioni in Matlab. Basandosi su una revisione accurata della letteratura, questa ricerca implementa una strategia di controllo in due fasi, utilizzando un Linear-Quadratic-Regulator (LQR) per stabilizzare il movimento della gondola, come step intermedio per l'implementazione successiva, che utilizza un controllore Proporzionale-Integrale-Derivativo (PID) per il controllo della line-of-sight dell'antenna. I risultati dimostrano che la strategia combinata di LQR e PID soddisfa efficacemente i requisiti di performance, sottolineando l'importanza di stabilizzare la gondola per migliorare le prestazioni dell'antenna. Inoltre, i risultati suggeriscono la necessità di un'analisi più approfondita delle possibili interazioni dinamiche tra il pallone e la gondola. In conclusione, questo studio approfondisce la comprensione delle strategie di controllo attivo per piattaforme aeree con gondola strumentata, che operano nelle difficili condizioni di Venere, gettando così le basi per future decisioni di progettazione da parte del team.
Control of Venus Aerobot flight train for inertial target tracking
Marzorati, Matteo
2023/2024
Abstract
This thesis addresses the development of models of the dynamics and control strategy in the context of NASA's Venus Aerial Robotic Balloon system development. The objectives of this work are to develop a control strategy that enables the antenna, mounted on the gondola, to point toward and track an inertial target, and to gain crucial insights into the dynamics of the balloon-gondola-antenna system. Within the framework of Venus Aerobot mission, this research is significant as it addresses the importance of controlling instruments positioned on the gondola, thereby paving the way for further investigation. Thus, a mathematical model of the balloon-gondola-antenna system is developed to capture the system's dynamics, forming the basis for designing and validating the control strategy through simulations carried out in Matlab. Grounded in a comprehensive literature review, this research implements a two-step control strategy, employing a Linear Quadratic Regulator (LQR) to stabilize the motion of the gondola, as an intermediate step for the subsequent phase, which utilizes a Proportional-Integral-Derivative (PID) to enable the control of the antenna's line of sight. Furthermore, the results demonstrate that the combined LQR and PID control strategy effectively meet the performance requirements, highlighting the importance of stabilizing the gondola platform to enhance antenna performance. Additionally, the results suggest the need for a deeper analysis of potential couplings between balloon and gondola dynamics. In conclusion, the insights gained from this study advance the understanding of active control strategies for aerial platforms with instrumented gondola operating in the challenging conditions of Venus, thereby laying the groundwork for future informed design decisions by the team.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_07_Marzorati_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri |
|
2024_07_Marzorati_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
29.17 MB
Formato
Adobe PDF
|
29.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222883