This work introduces and validates a dynamic thickened flame model (DTFLES) for Large Eddy Simulations (LES) in OpenFOAM, applied to H2/air partially-premixed and applied on the HYLON combustor. Starting with an overview of the hydrogen advantages, this study addresses the imperative need for enhanced predictive capabilities in turbulent combustion simulations. The implementation of the DTFLES model within OpenFOAM, a computational fluid dynamics (CFD) open source software is presented in this work, emphasizing its adaptability to different local flow conditions. One of the key objectives of this work is the modelling of turbulent combustion with a focus on partially-premixed flames, proving the model's potential for simulating with good accuracy this complex phenomenon. A series of simulations both on non-reacting and reacting flow cases are performed, in particular during the reacting flow case both turbulent premixed and a non-premixed flame regimes simulation have been performed, providing an analysis of the DTFLES model's performance. The simulations results are rigorously compared against experimental data, and validated with two test cases: the Volvo rig combustor and the EM2C burner. Performance metrics include flame shape, turbulence characteristics, velocity and temperature profiles. This comparative analysis demonstrates the DTFLES model's ability to accurately predict turbulent partially-premixed combustion. This study significantly contributes to the advancement of combustion modeling within OpenFOAM, providing a new validated model for researchers and engineers who are currently working on turbulent combustion simulations, with a particular focus on hydrogen partially-premixed combustion scenarios. The validated DTFLES model is a valuable asset for understanding and predicting complex combustion processes, promoting further advances in CFD combustion research, and providing insights for applications in clean energy and propulsion systems.
Questo lavoro si focalizza sulla ricerca, implementazione e validazione di un modello per la combustione dell'idrogeno e aria in regimi parzialmente premiscelati. Una volta svolta una ricerca e anlisi tra tutti i modelli presneti in letteratura è stato individuato il modello più accurato ed efficiente per il caso in analisi, tale modello è il DTFLES, Dynamic Thickened Flame model for LES (Large Eddy Simulations). Quest'ultimo è stato poi implementato e validato in OpenFOAM, un software open source per le simulazioni CFD. Per la validazione del modello sono stati selezionati due test case: uno bidimensionale, sviluppato presso l'EM2C laboratory di Parigi, tramite il quale è stato possibile validare il modello e le costanti utilizzate in un semplice caso bidimensionale. In seguito agli ottimi risulatiti ottenuti nel caso bidimensionale si è passati a testare il modello su un test case tridimensionale, chiamato Volvo rig combustor. I risultati delle simulazioni LES effettuate sul Volvo rig combustor sono stati confrontati con quelli sperimentali, i parametri di performance messi a confronto con l'esperimento includono la forma della fiamma, la velocità, le caratteristiche della turbolenza e i profili di velocità e temperatura. L'analisi comparativa ha evidenziato l'efficacia del modello DTFLES nel prevedere con precisione le caratteristiche della combustione turbolenta anche in caso di coesistenza di fiamme premiscelate e diffusive. Questo studio rappresenta un contributo significativo all'avanzamento della modellazione della combustione all'interno di OpenFOAM, offrendo uno strumento personalizzato e validato per i ricercatori e ingegneri impegnati nelle simulazioni di combustione turbolenta, con un focus particolare sugli scenari di combustione dell'idrogeno parzialmente premiscelata. Il modello DTFLES validato si rivela una risorsa preziosa per comprendere e prevedere i complessi processi di combustione, promuovendo ulteriori progressi negli studi di combustione basati sulla CFD e offrendo importanti spunti per applicazioni nell'energia pulita e nei sistemi di propulsione.
Implementation of a dynamic thickened flame model for large eddy simulations in OpenFOAM
FEBBRARO, GIUSEPPE
2023/2024
Abstract
This work introduces and validates a dynamic thickened flame model (DTFLES) for Large Eddy Simulations (LES) in OpenFOAM, applied to H2/air partially-premixed and applied on the HYLON combustor. Starting with an overview of the hydrogen advantages, this study addresses the imperative need for enhanced predictive capabilities in turbulent combustion simulations. The implementation of the DTFLES model within OpenFOAM, a computational fluid dynamics (CFD) open source software is presented in this work, emphasizing its adaptability to different local flow conditions. One of the key objectives of this work is the modelling of turbulent combustion with a focus on partially-premixed flames, proving the model's potential for simulating with good accuracy this complex phenomenon. A series of simulations both on non-reacting and reacting flow cases are performed, in particular during the reacting flow case both turbulent premixed and a non-premixed flame regimes simulation have been performed, providing an analysis of the DTFLES model's performance. The simulations results are rigorously compared against experimental data, and validated with two test cases: the Volvo rig combustor and the EM2C burner. Performance metrics include flame shape, turbulence characteristics, velocity and temperature profiles. This comparative analysis demonstrates the DTFLES model's ability to accurately predict turbulent partially-premixed combustion. This study significantly contributes to the advancement of combustion modeling within OpenFOAM, providing a new validated model for researchers and engineers who are currently working on turbulent combustion simulations, with a particular focus on hydrogen partially-premixed combustion scenarios. The validated DTFLES model is a valuable asset for understanding and predicting complex combustion processes, promoting further advances in CFD combustion research, and providing insights for applications in clean energy and propulsion systems.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Febbraro_Tesi.pdf
accessibile in internet per tutti
Dimensione
35.91 MB
Formato
Adobe PDF
|
35.91 MB | Adobe PDF | Visualizza/Apri |
2024_07_Febbraro_Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222917