The osteointegration of spinal cages is crucial in surgery. These devices are often manufactured using additive manufacturing (AM) technologies, which require post-production surface treatments to optimize their surface. Subsequently, the samples can be subjected to chemical and electrochemical coating treatments to obtain a bioactive surface that further promotes osteointegration. In this study, spinal cages made of Ti6Al4V titanium alloy were treated with acid etching in solutions containing oxalic acid (O) or a mixture of nitric and hydrofluoric acids (FN). Subsequently, the samples were coated using various techniques: SolGel treatment with calcium phosphates, cathodic electrodeposition of brushite (EDC), and anodic oxidation in borax solution (PEO). The samples were characterized using stereoscopic and electron microscopy, while the release of the dopants in PBS was evaluated through ICP characterization. The results indicate that post-AM chemical treatments, particularly the treatment O, are essential for improving the morphology of the samples, effectively removing surface protrusions and creating a nanometric roughness ideal for subsequent coatings. Regarding the coatings, the SolGel technique showed improvements with increased immersion times, although delamination remained an issue for samples with initial morphologies that were free of post-AM treatments. EDC demonstrated greater robustness regardless of the initial condition, although the FN treatment negatively affected the coating's uniformity. Some samples made using variants of SolGel and EDC coating solutions containing Ag and Cu respectively as doping agents were also subjected to release testing. The release of dopants occured rapidly for samples treated with SolGel and more consistently over time for samples treated with EDC. PEO coatings were less effective, highlighting the importance of the quality and composition of the powders used in production.
L'osteointegrazione delle cage spinali è cruciale in chirurgia. Spesso tali dispositivi sono fabbricati mediante tecnologie additive (AM), che richiedono trattamenti superficiali post-produzione per ottimizzarne la superficie. In seguito, i campioni possono essere sottoposti a rivestimenti chimici ed elettrochimici per ottenere una superficie bioattiva che ne promuova ulteriormente l'osteointegrazione. In questo studio, cage spinali in lega di titanio Ti6Al4V sono state trattate con attacco acido in soluzioni contenenti acido ossalico (O) o una miscela di acido nitrico e fluoridrico (FN). In seguito, i campioni sono stati rivestiti mediante diverse tecniche: trattamento SolGel con calcio fosfati, elettrodeposizione catodica di brushite (EDC) e ossidazione anodica in soluzione di borace (PEO). La caratterizzazione dei campioni è stata eseguita tramite microscopia stereoscopica ed elettronica, mentre il rilascio degli agenti dopanti in PBS è stato valutato mediante caratterizzazione ICP. I risultati indicano che i trattamenti chimici post-AM, in particolare il trattamento O, sono fondamentali per migliorare la morfologia dei campioni, rimuovendo efficacemente le protuberanze superficiali e creando una rugosità nanometrica ideale per i successivi rivestimenti. Per quanto riguarda i rivestimenti, la tecnica SolGel ha mostrato miglioramenti all'aumentare delle immersioni, sebbene la delaminazione sia rimasta un problema per campioni con morfologie di partenza prive di trattamenti post-AM. L'EDC ha dimostrato una maggiore robustezza indipendentemente dalla condizione iniziale, sebbene il trattamento FN abbia influenzato negativamente l'uniformità del rivestimento. Inoltre, sono stati sottoposti a test di rilascio alcuni campioni realizzati utilizzando varianti delle soluzioni di rivestimento SolGel ed EDC contenenti rispettivamente Ag e Cu come agenti dopanti. Il rilascio dei dopanti è avvenuto in modo rapido per i campioni trattati con SolGel e in modo più costante nel tempo per i campioni trattati con EDC. I rivestimenti PEO sono risultati meno efficaci, sottolineando l'importanza della qualità e della composizione delle polveri utilizzate in produzione.
Trattamenti Chimici ed Elettrochimici su Cage Spinali in Titanio Ottenute Mediante 3D Printing
Caverzasi, Gabriele;CARIANI, ANDREA
2023/2024
Abstract
The osteointegration of spinal cages is crucial in surgery. These devices are often manufactured using additive manufacturing (AM) technologies, which require post-production surface treatments to optimize their surface. Subsequently, the samples can be subjected to chemical and electrochemical coating treatments to obtain a bioactive surface that further promotes osteointegration. In this study, spinal cages made of Ti6Al4V titanium alloy were treated with acid etching in solutions containing oxalic acid (O) or a mixture of nitric and hydrofluoric acids (FN). Subsequently, the samples were coated using various techniques: SolGel treatment with calcium phosphates, cathodic electrodeposition of brushite (EDC), and anodic oxidation in borax solution (PEO). The samples were characterized using stereoscopic and electron microscopy, while the release of the dopants in PBS was evaluated through ICP characterization. The results indicate that post-AM chemical treatments, particularly the treatment O, are essential for improving the morphology of the samples, effectively removing surface protrusions and creating a nanometric roughness ideal for subsequent coatings. Regarding the coatings, the SolGel technique showed improvements with increased immersion times, although delamination remained an issue for samples with initial morphologies that were free of post-AM treatments. EDC demonstrated greater robustness regardless of the initial condition, although the FN treatment negatively affected the coating's uniformity. Some samples made using variants of SolGel and EDC coating solutions containing Ag and Cu respectively as doping agents were also subjected to release testing. The release of dopants occured rapidly for samples treated with SolGel and more consistently over time for samples treated with EDC. PEO coatings were less effective, highlighting the importance of the quality and composition of the powders used in production.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Cariani_Caverzasi.pdf
non accessibile
Descrizione: Documento Tesi
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Cariani_Caverzasi.pdf
non accessibile
Descrizione: Executive summary
Dimensione
287.97 kB
Formato
Adobe PDF
|
287.97 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222946