This thesis investigates the Interest Rates’ modeling frameworks adopted after the interbank rates reform, the dual curve and the new single curve environments. We introduce the dynamics of the reference inter-bank rates in a generalization of the Heath Jarrow and Morton framework, focusing on the normal Market Models and the Bachelier formula for pricing Interest Rates’ options in these new modeling environments (the dual and single curve frames). The second model that we introduce is the Stochastic Alpha Beta Rho model, in the dual and single curve environments. After the theoretical description of these modeling frameworks, we proceed with the calibration on market data from the US and Euro markets, following the Calibration Cascade algorithm for the calibration of the Market Models and of the SABR model.

In questa tesi studiamo la modellistica per tassi di interesse adottata dopo la riforma dei tassi interbancari, i modelli con doppia curva e i nuovi modelli con singola curva. Introduciamo la dinamica per i tassi di interesse interbancari in una generalizzazione della modellistica di Heath Jarrow e Morton, concentrandoci sui modelli di mercato e sulla formula di Bachelier per il prezzaggio di opzioni sui tassi di interesse nelle due nuove modellistiche (quelle a doppia e a singola curva). Il secondo modello che introduciamo é il modello Stochastic Alpha Beta Rho, nelle modellistiche a doppia curva e singola curva. Dopo la descrizione teorica di queste modellistiche, procediamo alla calibrazione dei modelli sui dati di mercato, osservati dai mercati europeo e americano, seguendo l’algoritmo di calibrazione a cascata.

Bachelier modeling in single and double curve Interest Rates frameworks

Massaria, Michele Domenico
2023/2024

Abstract

This thesis investigates the Interest Rates’ modeling frameworks adopted after the interbank rates reform, the dual curve and the new single curve environments. We introduce the dynamics of the reference inter-bank rates in a generalization of the Heath Jarrow and Morton framework, focusing on the normal Market Models and the Bachelier formula for pricing Interest Rates’ options in these new modeling environments (the dual and single curve frames). The second model that we introduce is the Stochastic Alpha Beta Rho model, in the dual and single curve environments. After the theoretical description of these modeling frameworks, we proceed with the calibration on market data from the US and Euro markets, following the Calibration Cascade algorithm for the calibration of the Market Models and of the SABR model.
ING - Scuola di Ingegneria Industriale e dell'Informazione
16-lug-2024
2023/2024
In questa tesi studiamo la modellistica per tassi di interesse adottata dopo la riforma dei tassi interbancari, i modelli con doppia curva e i nuovi modelli con singola curva. Introduciamo la dinamica per i tassi di interesse interbancari in una generalizzazione della modellistica di Heath Jarrow e Morton, concentrandoci sui modelli di mercato e sulla formula di Bachelier per il prezzaggio di opzioni sui tassi di interesse nelle due nuove modellistiche (quelle a doppia e a singola curva). Il secondo modello che introduciamo é il modello Stochastic Alpha Beta Rho, nelle modellistiche a doppia curva e singola curva. Dopo la descrizione teorica di queste modellistiche, procediamo alla calibrazione dei modelli sui dati di mercato, osservati dai mercati europeo e americano, seguendo l’algoritmo di calibrazione a cascata.
File allegati
File Dimensione Formato  
2024_07_Massaria_Tesi.pdf

accessibile in internet per tutti

Descrizione: testo tesi
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri
2024_07_Massaria_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: executive summary
Dimensione 883.89 kB
Formato Adobe PDF
883.89 kB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/222960