Environmental odours from industrial and agricultural activities near urban areas often trigger resident complaints, necessitating thorough assessments of their impact on public health and well-being. Odour dispersion modelling plays a crucial role in understanding the transport dynamics of these pollutants, despite their typically low concentrations in residential zones. Sensitivity analysis provides a systematic framework for evaluating how variations in parameters influence model outcomes, enabling users to pinpoint the most critical factors and refine predictions. This study consists of three main components: firstly, a comprehensive sensitivity analysis of the Lagrangian Particle Dispersion Model LAPMOD; secondly, a comparative study between LAPMOD and CALPUFF, a widely-used regulatory model; and finally, validation of LAPMOD and CALPUFF focusing on area sources. The sensitivity analysis of LAPMOD focuses on key parameters such as turbulent parametrization, meteorological data interpolation, algorithms for simulating plume rise, and three different kernels for estimating concentrations. This investigation highlights that the choice of concentration estimation kernel significantly impacts model outputs, with the Gaussian Kernel emerging as the most physically realistic choice. Comparative analysis with CALPUFF reveals that LAPMOD generally underestimates odour impacts from area sources compared to CALPUFF. However, both models show quite consistent trends for point sources, with discrepancies primarily influenced by variability in wind direction. During the validation phase, LAPMOD and CALPUFF are evaluated using experimental data from LNG releases at China Lake, California, with a focus on area sources. CALPUFF demonstrates superior overall accuracy, robustly meeting validation criteria with broader plume estimates. LAPMOD, while capable of effective performance with optimized receptor configurations, occasionally exhibits outliers, particularly in capturing lateral dispersion. In conclusion, CALPUFF demonstrates superior overall performance compared to LAPMOD, showing greater consistency and accuracy in predictions. While LAPMOD tends to underestimate with respect to the observed values, it provides valuable insights once outlier issues are addressed. Both models are effective tools for odour dispersion modelling, with CALPUFF particularly noted for its historical robustness and reliability.
Gli odori ambientali derivanti dalle attività industriali e agricole nelle vicinanze delle aree urbane spesso causano lamentele tra i residenti, rendendo cruciale una valutazione accurata del loro impatto sulla salute pubblica e sul benessere. La modellazione della dispersione degli odori gioca un ruolo fondamentale nel comprendere la dinamica di trasporto di questi inquinanti, nonostante le loro concentrazioni generalmente basse nelle zone residenziali. L'analisi di sensitività fornisce un quadro sistemico per valutare come le variazioni dei parametri influenzino i risultati del modello, consentendo agli utenti di identificare i fattori più significativi e ottimizzare le previsioni. Questo studio si suddivide in tre parti principali: un'approfondita analisi di sensitività del modello Lagrangiano a particelle LAPMOD; uno studio comparativo tra LAPMOD e CALPUFF, un modello regolatorio ampiamente utilizzato; infine, la validazione di LAPMOD e CALPUFF focalizzata sulle sorgenti areali. L'analisi di sensitività di LAPMOD esamina parametri chiave come la parametrizzazione turbolenta, l'interpolazione dei dati meteorologici, gli algoritmi per simulare l'innalzamento del pennacchio e diversi kernel per stimare le concentrazioni. Questo studio rivela che la scelta del kernel per la stima delle concentrazioni influisce significativamente sui risultati del modello, evidenziando il kernel gaussiano come la scelta più appropriata dal punto di vista fisico. Il confronto con CALPUFF mostra che LAPMOD tende generalmente a sottostimare gli impatti degli odori relativi alle sorgenti areali rispetto a CALPUFF. Tuttavia, entrambi i modelli mostrano tendenze più coerenti per le sorgenti puntuali, con discrepanze influenzate principalmente dalla variabilità della direzione del vento. Durante la fase di validazione, LAPMOD e CALPUFF sono valutati utilizzando dati sperimentali relativi a rilasci di LNG presso China Lake, California, con particolare attenzione alle sorgenti areali. CALPUFF dimostra una precisione complessiva superiore, soddisfacendo pienamente i criteri di validazione con stime del pennacchio più ampie. LAPMOD, sebbene capace di prestazioni efficaci con configurazioni ottimizzate dei recettori, occasionalmente presenta valori anomali, soprattutto nella rappresentazione della dispersione laterale. In conclusione, CALPUFF mostra una performance complessiva superiore rispetto a LAPMOD, con maggiore coerenza e precisione nelle previsioni. Nonostante LAPMOD tenda a sottostimare rispetto ai valori misurati, fornisce informazioni utili una volta corretti i valori anomali. Entrambi i modelli si dimostrano efficaci nella modellazione della dispersione degli odori, con CALPUFF particolarmente apprezzato per la sua consolidata robustezza e affidabilità nel contesto ambientale.
Sensitivity analysis and validation for odour dispersion modelling: LAPMOD evaluation and comparison with CALPUFF
Rota, Alessandra
2023/2024
Abstract
Environmental odours from industrial and agricultural activities near urban areas often trigger resident complaints, necessitating thorough assessments of their impact on public health and well-being. Odour dispersion modelling plays a crucial role in understanding the transport dynamics of these pollutants, despite their typically low concentrations in residential zones. Sensitivity analysis provides a systematic framework for evaluating how variations in parameters influence model outcomes, enabling users to pinpoint the most critical factors and refine predictions. This study consists of three main components: firstly, a comprehensive sensitivity analysis of the Lagrangian Particle Dispersion Model LAPMOD; secondly, a comparative study between LAPMOD and CALPUFF, a widely-used regulatory model; and finally, validation of LAPMOD and CALPUFF focusing on area sources. The sensitivity analysis of LAPMOD focuses on key parameters such as turbulent parametrization, meteorological data interpolation, algorithms for simulating plume rise, and three different kernels for estimating concentrations. This investigation highlights that the choice of concentration estimation kernel significantly impacts model outputs, with the Gaussian Kernel emerging as the most physically realistic choice. Comparative analysis with CALPUFF reveals that LAPMOD generally underestimates odour impacts from area sources compared to CALPUFF. However, both models show quite consistent trends for point sources, with discrepancies primarily influenced by variability in wind direction. During the validation phase, LAPMOD and CALPUFF are evaluated using experimental data from LNG releases at China Lake, California, with a focus on area sources. CALPUFF demonstrates superior overall accuracy, robustly meeting validation criteria with broader plume estimates. LAPMOD, while capable of effective performance with optimized receptor configurations, occasionally exhibits outliers, particularly in capturing lateral dispersion. In conclusion, CALPUFF demonstrates superior overall performance compared to LAPMOD, showing greater consistency and accuracy in predictions. While LAPMOD tends to underestimate with respect to the observed values, it provides valuable insights once outlier issues are addressed. Both models are effective tools for odour dispersion modelling, with CALPUFF particularly noted for its historical robustness and reliability.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Rota_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
2024_07_Rota_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222961