PolyJet 3D printing is one of the most recent additive manufacturing techniques; it consists in depositing droplets of liquid resin, made of photopolymers, that are UV cured to obtain a wide range of materials, both rigid and rubbery. The peculiarity of this technology is the capability to print multiple materials at once, either by mixing or simultaneously printing them, making possible to print complex heterogeneous composites objects made by co-continues structures. This feature is very appealing for designing bio-inspired materials and objects for structural purpose, for example in the aerospace field or for prosthetic applications, making possible to create materials with a gradient of properties impossible to manufacture with other technologies. Similar to other 3D printing technology, several parameters can influence the mechanical behaviour of structures printed; the main influencing factors are the printing orientation and the UV exposure, whose effects are broadly studied for what concerns tensile behaviour, while their influence on the fracture behaviour have never been analysed in depth. This thesis is in collaboration with the Université of Liège, where the specimens tested were printed. Three materials were studied: VeroWhitePlusTM (VW+), glassy at ambient temperature, TangoBlackPlusTM (TB+), rubbery at ambient temperature, and G60, which is a mixture of a VW+ matrix, 82% in weight, with TB+ inclusions, 12% in weight. The effect of orientation was studied for all three materials, using the four-point bending configuration for G60 and VW+ and the pure shear configuration for TB+. The effect of UV exposure was studied just on G60 and VW+, printing with a non-calibrated lamp, lowest UV exposure, then with a calibrated lamp and finally with a new lamp, using different spacing on the printing tray to increase or decrease the UV exposure of specimens based on their position. All the specimens used in fracture tests underwent a thermal treatment. To characterize the fracture mechanics LEFM was applied to VW+ and G60, while non-linear fracture mechanics was applied to TB+. To explore the differences seen in the fracture behaviour for different UV exposures various techniques were used: photo-DSC was used to assure if there was some difference in curing, DSC and DMA were used to see if the thermal behaviour changed between different UV exposure, and TD-NMR was used to find out if different exposures led to different rigid fractions.
La stampa PolyJet 3D è una delle più recenti tecniche di additive manufacturing; consiste nel depositare gocce di resina liquida, composta da fotopolimeri, che vengono polimerizzate con una luce UV per ottenere un'ampia gamma di materiali, sia rigidi che gommosi. La peculiarità di questa tecnologia è la capacità di stampare più materiali contemporaneamente, mescolandoli o stampandoli simultaneamente, rendendo possibile la stampa di compositi eterogenei complessi costituiti da strutture co-continue. Questa caratteristica è molto interessante per la progettazione di materiali bio-ispirati e oggetti a scopo strutturale, ad esempio nel settore aerospaziale o per applicazioni protesiche, rendendo possibile la creazione di materiali con un gradiente di proprietà impossibile da produrre altrimenti. Come per altre tecniche di stampa 3D, diversi parametri possono influenzare il comportamento delle strutture stampate; i principali fattori di influenza sono l'orientamento di stampa e l'esposizione all’UV, i cui effetti sono ampiamente studiati per quanto riguarda il comportamento a trazione, mentre la loro influenza sul comportamento a frattura non è mai stata analizzata in profondità. Questa tesi è in collaborazione con l'Università di Liegi, dove sono stati stampati i campioni testati. Sono stati studiati tre materiali: VeroWhitePlusTM (VW+), vetroso a temperatura ambiente, TangoBlackPlusTM (TB+), gommoso a temperatura ambiente, e G60, composto da una matrice di VW+, 82% in peso, con inclusioni di TB+, 12% in peso. L'effetto dell'orientamento è stato studiato per tutti e tre i materiali, utilizzando la flessione a quattro punti per G60 e VW+ e la configurazione in pure shear per TB+. L'effetto dell'esposizione all’UV è stato studiato solo su G60 e VW+, stampando con una lampada non calibrata, ovvero minima esposizione all’UV, poi con una lampada calibrata e infine con una lampada nuova, utilizzando spaziature diverse sul vassoio di stampa per aumentare o diminuire l'esposizione all’UV dei campioni in base alla loro posizione. Tutti i campioni utilizzati nelle prove di frattura sono stati sottoposti a un trattamento termico. Per caratterizzare la meccanica della frattura, la LEFM è stata applicata a VW+ e G60, mentre la meccanica della frattura non lineare è stata applicata al TB+. Per esplorare le differenze riscontrate nel comportamento a frattura per le diverse esposizioni all’UV, sono state utilizzate diverse tecniche: la foto-DSC per verificare se vi fossero differenze di polimerizzazione, la DSC e la DMA per verificare se il comportamento termico cambiasse tra le diverse esposizioni ai raggi UV e la TD-NMR per scoprire se le diverse esposizioni portassero a diverse frazioni rigide.
Effect of printing orientation and UV exposure on fracture properties of PolyJet 3D printed materials
PASSONI, FEDERICO
2023/2024
Abstract
PolyJet 3D printing is one of the most recent additive manufacturing techniques; it consists in depositing droplets of liquid resin, made of photopolymers, that are UV cured to obtain a wide range of materials, both rigid and rubbery. The peculiarity of this technology is the capability to print multiple materials at once, either by mixing or simultaneously printing them, making possible to print complex heterogeneous composites objects made by co-continues structures. This feature is very appealing for designing bio-inspired materials and objects for structural purpose, for example in the aerospace field or for prosthetic applications, making possible to create materials with a gradient of properties impossible to manufacture with other technologies. Similar to other 3D printing technology, several parameters can influence the mechanical behaviour of structures printed; the main influencing factors are the printing orientation and the UV exposure, whose effects are broadly studied for what concerns tensile behaviour, while their influence on the fracture behaviour have never been analysed in depth. This thesis is in collaboration with the Université of Liège, where the specimens tested were printed. Three materials were studied: VeroWhitePlusTM (VW+), glassy at ambient temperature, TangoBlackPlusTM (TB+), rubbery at ambient temperature, and G60, which is a mixture of a VW+ matrix, 82% in weight, with TB+ inclusions, 12% in weight. The effect of orientation was studied for all three materials, using the four-point bending configuration for G60 and VW+ and the pure shear configuration for TB+. The effect of UV exposure was studied just on G60 and VW+, printing with a non-calibrated lamp, lowest UV exposure, then with a calibrated lamp and finally with a new lamp, using different spacing on the printing tray to increase or decrease the UV exposure of specimens based on their position. All the specimens used in fracture tests underwent a thermal treatment. To characterize the fracture mechanics LEFM was applied to VW+ and G60, while non-linear fracture mechanics was applied to TB+. To explore the differences seen in the fracture behaviour for different UV exposures various techniques were used: photo-DSC was used to assure if there was some difference in curing, DSC and DMA were used to see if the thermal behaviour changed between different UV exposure, and TD-NMR was used to find out if different exposures led to different rigid fractions.File | Dimensione | Formato | |
---|---|---|---|
2024_7_Passoni_executivesummary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
922.07 kB
Formato
Adobe PDF
|
922.07 kB | Adobe PDF | Visualizza/Apri |
2024_7_Passoni.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.41 MB
Formato
Adobe PDF
|
5.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223031