Petroleum hydrocarbons and nitrates can contaminate soil, subsoil, and groundwater, encountering humans and harming their health. The Bioelectrochemical system (BES) exploits the potential difference between two locations to transfer electrons from an anodic zone (reducing conditions), where the oxidation of a substance occurs, to a cathodic zone (oxidizing conditions), where they are involved in the reduction of final electron acceptors. This is achieved using a conductive material. In this study, a dual-chamber configuration, inserted into a single reactor, was installed to investigate the removal of hydrocarbons and nitrates from soils under saturated conditions. Two continuous-fed mode BES, namely Microbial Fuel Cell (MFC) and Microbial Electrochemical Snorkel (MES), were constructed alongside an OpenCircuit control system (OC). Nitrate contamination was introduced by adding a KNO3 solution to the cathode to reach a concentration of 100 mg NO3-/L. Their reduction was observed in the MES system with a maximum removal efficiency of 34.53 ± 28.62%. To accelerate microbial growth at the anode, a sodium acetate solution was added. The electrical signal produced by the MFC was detected after each injection. Chemical parameters such as pH, electrical conductivity, and redox potential were monitored, revealing an increase in pH at the cathode and a continuous rise in electrical conductivity throughout the experiment, unaffected by the added solutions. Another batch mode experiment was conducted with OC, MES, and BES at imposed potential, where the greatest nitrate reduction in the aqueous solution at the cathode was observed in the MES (86.76%).
Idrocarburi del petrolio e nitrati possono contaminare suoli, sottosuoli e acque di falda ed entrare a contatto con l’essere umano danneggiandone la salute. Il sistema Bioelettrochimico (BES) sfrutta la differenza di potenziale tra due luoghi per condurre gli elettroni da una zona anodica (condizioni riducenti), in cui avviene l’ossidazione di una sostanza, ad una catodica (condizioni ossidanti), i quali vengono coinvolti nella riduzione di accettori finali di elettroni. Tutto questo grazie un materiale conduttivo. In questo studio, una configurazione a doppia camera, inserita in un unico reattore, è stata installata per investigare la rimozione di idrocarburi e nitrati da suoli in condizioni sature. Due BES a modalità di alimentazione continua, quali Microbial Fuel Cell (MFC) e Microbial Eletrochemical Snorkel (MES) sono stati costruiti in concomitanza con un sistema di controllo a circuito aperto (OC). La contaminazione di nitrati è data dall’inserimento di una soluzione di KNO3 al catodo per raggiungere una concentrazione di 100 mgNO3-/L. La loro riduzione è stata rilevata nel sistema MES con una efficienza di rimozione massima di 34.53 ± 28.62 %. Per accelerare la crescita microbica all’anodo è stata inserita una soluzione di acetato di sodio. Da questa è stato rilevato il segnale elettrico prodotto dall’MFC dopo ogni iniezione. Sono stati monitorati parametri chimici quali pH, conducibilità elettrica e potenziale di ossido-riduzione, ottenendo un aumento del pH al catodo e una conducibilità elettrica che crescere durante tutto il periodo di esperimento senza che venga influenzata dalle soluzioni aggiunte. È stato portato avanti un altro esperimento in modalità batch con OC, MES e BES a potenziale imposto in cui la maggiore riduzione di nitrati nella soluzione acquosa al catodo è stata rilevata nel MES (86.76%).
Bioelectrochemical technologies for simultaneous removal of petroleum hydrocarbons and nitrate from saturated soils
Dominici, Rebecca
2023/2024
Abstract
Petroleum hydrocarbons and nitrates can contaminate soil, subsoil, and groundwater, encountering humans and harming their health. The Bioelectrochemical system (BES) exploits the potential difference between two locations to transfer electrons from an anodic zone (reducing conditions), where the oxidation of a substance occurs, to a cathodic zone (oxidizing conditions), where they are involved in the reduction of final electron acceptors. This is achieved using a conductive material. In this study, a dual-chamber configuration, inserted into a single reactor, was installed to investigate the removal of hydrocarbons and nitrates from soils under saturated conditions. Two continuous-fed mode BES, namely Microbial Fuel Cell (MFC) and Microbial Electrochemical Snorkel (MES), were constructed alongside an OpenCircuit control system (OC). Nitrate contamination was introduced by adding a KNO3 solution to the cathode to reach a concentration of 100 mg NO3-/L. Their reduction was observed in the MES system with a maximum removal efficiency of 34.53 ± 28.62%. To accelerate microbial growth at the anode, a sodium acetate solution was added. The electrical signal produced by the MFC was detected after each injection. Chemical parameters such as pH, electrical conductivity, and redox potential were monitored, revealing an increase in pH at the cathode and a continuous rise in electrical conductivity throughout the experiment, unaffected by the added solutions. Another batch mode experiment was conducted with OC, MES, and BES at imposed potential, where the greatest nitrate reduction in the aqueous solution at the cathode was observed in the MES (86.76%).File | Dimensione | Formato | |
---|---|---|---|
2024_07_Dominici_01.pdf
accessibile in internet per tutti a partire dal 30/06/2025
Descrizione: Tesi
Dimensione
7.4 MB
Formato
Adobe PDF
|
7.4 MB | Adobe PDF | Visualizza/Apri |
2024_07_Dominici_02.pdf
accessibile in internet per tutti a partire dal 30/06/2025
Descrizione: Executive summary
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223053