Coastal protection is crucial for mitigating flood risks and ensuring the safety of coastal communities. In general, coastal areas are particularly vulnerable and could face significant risks. Regarding climate change, in particular global warming, rising sea levels (SLR), and their impacts on coastal communities are widely recognized effects in these regions. Wave overtopping accounts for one of the most significant potential impacts of sea level rise (SLR) on coastal regions. Moreover, this phenomenon is also one of the major challenges coastal defenses face in preventing flooding. Therefore, to manage coastal defenses more efficiently, it is required to assess overtopping for each of them such as seawalls. While empirical formulas offer insights into wave behavior, they often overlook the influence of curved geometries on wave dynamics. This thesis addresses this gap by conducting a comprehensive numerical analysis using DualSPHysics to quantitatively assess the impact of convex and concave corners on overtopping events at vertical seawalls. Through numerical simulations, varying angles of convexity and concavity—specifically, 90◦ and 135◦ for concave corners, and 225◦ and 270◦ for convex corners—are examined, alongside a reference vertical wall of 180◦. The simulations reveal that concave walls, due to their inward curvature, amplify wave energy and lead to higher wave elevations and increased overtopping volumes. Conversely, convex walls disperse wave energy, resulting in lower wave elevations and reduced overtopping volumes compared to concave walls, albeit with no significant differences compared to plain vertical walls. These findings underscore the criticality of considering wall geometry in coastal engineering to mitigate risks associated with wave overtopping and coastal flooding.
La protezione costiera è cruciale per mitigare i rischi di inondazione e garantire la sicurezza delle comunità costiere. In generale, le aree costiere sono particolarmente vulnerabili e potrebbero affrontare rischi significativi. Per quanto riguarda i cambiamenti climatici, in particolare il riscaldamento globale, l’innalzamento del livello del mare (SLR) e i loro impatti sulle comunità costiere sono effetti ampiamente riconosciuti in queste regioni. Il superamento delle onde rappresenta uno dei potenziali impatti più significativi dell’innalzamento del livello del mare (SLR) sulle regioni costiere. Inoltre, questo fenomeno è anche una delle principali sfide che le difese costiere devono affrontare per prevenire le inondazioni. Pertanto, per gestire le difese costiere in modo più efficiente, è necessario valutare il superamento delle onde per ciascuna di esse, come i muri di contenimento. Sebbene le formule empiriche offrano spunti sul comportamento delle onde, spesso trascurano l’influenza delle geometrie curve sulla dinamica delle onde. Questa tesi affronta questa lacuna conducendo un’analisi numerica completa utilizzando DualSPHysics per valutare quantitativamente l’impatto degli angoli convessi e concavi sugli eventi di superamento delle onde presso i muri di contenimento verticali. Attraverso simulazioni numeriche, vengono esaminati angoli di convessità e concavità variabili—specificamente, 90◦ e 135◦ per gli angoli concavi, e 225◦ e 270◦ per gli angoli convessi—insieme a un muro verticale di riferimento di 180◦. Le simulazioni rivelano che i muri concavi, a causa della loro curvatura verso l’interno, amplificano l’energia delle onde e portano a elevate altezze delle onde e volumi di superamento aumentati. Al contrario, i muri convessi disperdono l’energia delle onde, risultando in altezze delle onde inferiori e volumi di superamento ridotti rispetto ai muri concavi, sebbene senza differenze significative rispetto ai muri verticali semplici. Questi risultati sottolineano la criticità di considerare la geometria dei muri nell’ingegneria costiera per mitigare i rischi associati al superamento delle onde e alle inondazioni costiere.
Smoothed Particle Hydrodynamics (SPH) simulation of wave overtopping the convex and concave corners of a vertical seawall
Mohsenitakallu, Zahra
2023/2024
Abstract
Coastal protection is crucial for mitigating flood risks and ensuring the safety of coastal communities. In general, coastal areas are particularly vulnerable and could face significant risks. Regarding climate change, in particular global warming, rising sea levels (SLR), and their impacts on coastal communities are widely recognized effects in these regions. Wave overtopping accounts for one of the most significant potential impacts of sea level rise (SLR) on coastal regions. Moreover, this phenomenon is also one of the major challenges coastal defenses face in preventing flooding. Therefore, to manage coastal defenses more efficiently, it is required to assess overtopping for each of them such as seawalls. While empirical formulas offer insights into wave behavior, they often overlook the influence of curved geometries on wave dynamics. This thesis addresses this gap by conducting a comprehensive numerical analysis using DualSPHysics to quantitatively assess the impact of convex and concave corners on overtopping events at vertical seawalls. Through numerical simulations, varying angles of convexity and concavity—specifically, 90◦ and 135◦ for concave corners, and 225◦ and 270◦ for convex corners—are examined, alongside a reference vertical wall of 180◦. The simulations reveal that concave walls, due to their inward curvature, amplify wave energy and lead to higher wave elevations and increased overtopping volumes. Conversely, convex walls disperse wave energy, resulting in lower wave elevations and reduced overtopping volumes compared to concave walls, albeit with no significant differences compared to plain vertical walls. These findings underscore the criticality of considering wall geometry in coastal engineering to mitigate risks associated with wave overtopping and coastal flooding.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Mohsenitakallu.pdf
non accessibile
Descrizione: Text of the thesis
Dimensione
12.99 MB
Formato
Adobe PDF
|
12.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223058