The fight against climate change is one of the most strenuous of the twenty-first century. In order to limit the damage caused by global warming, a quick transition to low carbon emitting technologies, such as nuclear energy and renewable energy sources, is necessary. However, the intermittent nature of renewable energy sources creates challenges in the management of the electrical grid, which limits their adoption. To solve this issue, Nuclear Hybrid Energy Systems (NHES) might be able to supply cheap electrical energy, while increasing the overall flexibility of the system. This kind of hybrid systems could also produce other commodities, such as hydrogen, which can be sold to maximize their profits. Hydrogen is particularly interesting because it can be used in a variety of industrial environments and even in transportation technologies. In particular, the possibility of storing energy, makes hydrogen one of the most interesting option for the decarbonization of the energy sector. Between all of the possible hydrogen production technologies, High Temperature Water Electrolysis (HTSE) has been gaining a lot of interest between the scientific community thanks to the fact that a big portion of the required energy can be supplied in the form of heat, thus increasing the overall process efficiency. The objective of this work was to create a Modelica based dynamic model for a plant that could exploit both the electrical energy and the high temperature heat, deriving from the secondary cycle of a nuclear reactor, to produce hydrogen through electrolysis. The aforementioned model was validated and tested, in both steady state and transient conditions, by comparing two different operating modes, one exothermic and one endothermic. In particular, this work focused on the analysis of the overall hydrogen production efficiency of this two modes and on their respective operative ranges. Through the analysis of the obtained results it was concluded that, although the exothermic mode is characterized by greater performance, it is limited by a small operative range. For this reason, the endothermic mode, which is characterized by a larger operative range, has been deemed the best option for a Nuclear Hybrid Energy Systems (NHES), where the flexibility of the various components is of fundamental importance for the system's performance.
La lotta contro il cambiamento climatico è una delle sfide più ardue del ventunesimo secolo. Una rapida transizione verso tecnologie a basse emissioni di gas serra, come l'energia nucleare e le fonti di energia rinnovabile, è necessaria per limitare i danni causati dal riscaldamento globale. Tuttavia, a causa della natura intermittente delle fonti di energia rinnovabile, si creano delle problematiche di gestione della rete elettrica che ne limitano l'adozione. I sistemi energetici integrati potrebbero essere una alternativa per fornire energia elettrica in modo flessibile ed a basso prezzo. In alternativa all'energia elettrica, questi sistemi possono produrre altri tipi di beni, quali l'idrogeno, per massimizzare i ricavi dell'impianto. L'idrogeno è particolarmente interessante come alternativa per via dei suoi diversi utilizzi, che svariano dagli ambiti industriali, fino al trasporto. In particolare la possibilità di accumulare energia, rende l'idrogeno uno dei profili più importanti per quanto riguarda la decarbonizzazione del settore energetico. Fra tutte le tecnologie per la produzione di idrogeno, l'elettrolisi ad alta temperatura è caratterizzata dell'efficienza più alta, visto che permette di utilizzare calore per ridurre il consumo di energia elettrica. Per questo motivo l'elettrolisi ad alta temperatura è da tempo al centro di numerose ricerche. L'obbiettivo di questo lavoro è proprio quello di creare un modello dinamico, sfruttando il linguaggio Modelica, per un impianto che sfrutti l'energia elettrica e il calore derivante dal ciclo a vapore di un impianto nucleare per produrre idrogeno. Il suddetto modello è stato validato e successivamente testato dinamicamente confrontando due diverse modalità operative, una esotermica e una endotermica. Particolare attenzione è stata posta verso l'analisi delle relative efficience e al confronto dei range operativi delle due modalità. Tramite l'analisi dei risultati ottenuti è stato possibile concludere che la modalità esotermica, benché sia caratterizzata da una performance migliore, è limitata da un range operativo ristretto. Per questo motivo la modalità endotermica, che è caratterizzata da un range operativo più ampio, risulta essere l'alternativa migliore per il caso dei sistemi energetici ibridi, dove quanto la flessibilità dei vari impianti è una caratteristica di fondamentale importanza.
Dynamic modelling and performance analysis of a HTSE system for nuclear based hydrogen production
Mauri, Riccardo
2023/2024
Abstract
The fight against climate change is one of the most strenuous of the twenty-first century. In order to limit the damage caused by global warming, a quick transition to low carbon emitting technologies, such as nuclear energy and renewable energy sources, is necessary. However, the intermittent nature of renewable energy sources creates challenges in the management of the electrical grid, which limits their adoption. To solve this issue, Nuclear Hybrid Energy Systems (NHES) might be able to supply cheap electrical energy, while increasing the overall flexibility of the system. This kind of hybrid systems could also produce other commodities, such as hydrogen, which can be sold to maximize their profits. Hydrogen is particularly interesting because it can be used in a variety of industrial environments and even in transportation technologies. In particular, the possibility of storing energy, makes hydrogen one of the most interesting option for the decarbonization of the energy sector. Between all of the possible hydrogen production technologies, High Temperature Water Electrolysis (HTSE) has been gaining a lot of interest between the scientific community thanks to the fact that a big portion of the required energy can be supplied in the form of heat, thus increasing the overall process efficiency. The objective of this work was to create a Modelica based dynamic model for a plant that could exploit both the electrical energy and the high temperature heat, deriving from the secondary cycle of a nuclear reactor, to produce hydrogen through electrolysis. The aforementioned model was validated and tested, in both steady state and transient conditions, by comparing two different operating modes, one exothermic and one endothermic. In particular, this work focused on the analysis of the overall hydrogen production efficiency of this two modes and on their respective operative ranges. Through the analysis of the obtained results it was concluded that, although the exothermic mode is characterized by greater performance, it is limited by a small operative range. For this reason, the endothermic mode, which is characterized by a larger operative range, has been deemed the best option for a Nuclear Hybrid Energy Systems (NHES), where the flexibility of the various components is of fundamental importance for the system's performance.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Mauri_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
11.08 MB
Formato
Adobe PDF
|
11.08 MB | Adobe PDF | Visualizza/Apri |
2024_07_Mauri_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
627.33 kB
Formato
Adobe PDF
|
627.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223064