Hydrogen is increasing global interest as an energy carrier, crucial for cutting greenhouse gas emissions in sectors such as industry, refinery, transportation, and heating. This thesis investigates sustainable hydrogen production potential in Italy, focusing on environmental impacts and water use. The study begins by analysing various hydrogen production methods and their water footprints. Brown hydrogen from coal gasification and grey hydrogen from steam methane reforming (SMR) have significant environmental impacts. Blue hydrogen, similar to grey but with carbon capture, utilization, and storage (CCUS), aims to lower emissions. Green hydrogen, from renewable-powered water electrolysis, has the least environmental impact but requires substantial water. Italy's strategic location and natural gas infrastructure position it as a potential hub for Europe's hydrogen economy, facilitating green hydrogen distribution from Central Africa. Therefore, evaluating Italy's water resources and resilience under various climate scenarios is crucial for assessing a hydrogen-based economy's feasibility. The thesis focuses on Italy's blue water footprint for hydrogen production, evaluating water needs across regions and scenarios. Four scenarios are considered: Scenario 0 reaches full announced hydrogen plant capacity by 2030; Scenario 1 shifts industry and refinery from brown and grey to green hydrogen by 2030; Scenario 2 targets 25% hydrogen in freight transport by 2040; and Scenario 3 fully integrates hydrogen into transport and gas networks. For these scenarios, the study uses water withdrawal data to determine blue water scarcity, offering insights into national and hectare-level water availability under these scenarios. Results show water scarcity in hydrogen production mainly depends on emissions and temperature, rather than plant capacities. While promising by an engineering point of view, strategic water management is vital to prevent competition with water-intensive sectors like agriculture.
L'idrogeno sta suscitando un interesse globale come vettore energetico cruciale per ridurre le emissioni di gas serra nei settori dell'industria, della raffinazione, dei trasporti e del riscaldamento. Questa tesi studia il potenziale per la produzione di idrogeno verde in Italia, concentrandosi sugli impatti idrici. Lo studio inizia analizzando vari metodi di produzione di idrogeno e i loro impatti idrici. L'idrogeno marrone ottenuto dalla gassificazione del carbone e l'idrogeno grigio ottenuto dalla riformazione del metano (SMR) hanno significativi impatti ambientali. L'idrogeno blu, simile al grigio ma con cattura, utilizzo e stoccaggio del carbonio (CCUS), mira a ridurre le emissioni. L'idrogeno verde, prodotto mediante elettrolisi dell'acqua alimentata da fonti rinnovabili, ha il minor impatto ambientale ma richiede quantità significative di acqua. La posizione strategica dell'Italia e la sua rete gas la rendono un potenziale centro per l'economia dell'idrogeno in Europa, facilitando la distribuzione di idrogeno verde dall'Africa Centrale. Pertanto, la tesi valuta le risorse idriche italiane e la loro resilienza in vari scenari climatici. La tesi si concentra sulla blu water scarcity dell'Italia per la produzione di idrogeno, valutando i fabbisogni idrici di quattro scenari. Lo Scenario 0 prevede la piena capacità annunciata degli impianti entro il 2030; lo Scenario 1 sposta l'industria e la raffinazione dall'idrogeno marrone e grigio all'idrogeno verde al 2030; lo Scenario 2 mira al 25% di idrogeno nel trasporto merci entro il 2040; lo Scenario 3 integra completamente l'idrogeno nei trasporti e nelle reti del gas. Per questi scenari, lo studio utilizza dati sul prelievo di acqua per determinare la blue water scarcity, fornendo risultati a livello nazionale ed a una risoluzione di un ettaro. I risultati indicano che la water scarcity legata alla produzione di idrogeno dipende principalmente dalle emissioni e dalla temperatura, piuttosto che dalle capacità delle centrali. Sebbene promettenti dal punto di vista ingegneristico, è essenziale un management strategico delle risorse idriche per evitare conflitti con settori ad alta intensità di consumo di acqua come l'agricoltura.
Water resilience in Italy's green hydrogen transition: assessing blue water scarcity across climate scenarios
ALAIMO, LEONARDO
2023/2024
Abstract
Hydrogen is increasing global interest as an energy carrier, crucial for cutting greenhouse gas emissions in sectors such as industry, refinery, transportation, and heating. This thesis investigates sustainable hydrogen production potential in Italy, focusing on environmental impacts and water use. The study begins by analysing various hydrogen production methods and their water footprints. Brown hydrogen from coal gasification and grey hydrogen from steam methane reforming (SMR) have significant environmental impacts. Blue hydrogen, similar to grey but with carbon capture, utilization, and storage (CCUS), aims to lower emissions. Green hydrogen, from renewable-powered water electrolysis, has the least environmental impact but requires substantial water. Italy's strategic location and natural gas infrastructure position it as a potential hub for Europe's hydrogen economy, facilitating green hydrogen distribution from Central Africa. Therefore, evaluating Italy's water resources and resilience under various climate scenarios is crucial for assessing a hydrogen-based economy's feasibility. The thesis focuses on Italy's blue water footprint for hydrogen production, evaluating water needs across regions and scenarios. Four scenarios are considered: Scenario 0 reaches full announced hydrogen plant capacity by 2030; Scenario 1 shifts industry and refinery from brown and grey to green hydrogen by 2030; Scenario 2 targets 25% hydrogen in freight transport by 2040; and Scenario 3 fully integrates hydrogen into transport and gas networks. For these scenarios, the study uses water withdrawal data to determine blue water scarcity, offering insights into national and hectare-level water availability under these scenarios. Results show water scarcity in hydrogen production mainly depends on emissions and temperature, rather than plant capacities. While promising by an engineering point of view, strategic water management is vital to prevent competition with water-intensive sectors like agriculture.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Alaimo.pdf
solo utenti autorizzati a partire dal 01/07/2027
Descrizione: Testo tesi
Dimensione
2.26 MB
Formato
Adobe PDF
|
2.26 MB | Adobe PDF | Visualizza/Apri |
2024_07_Alaimo_Executive.pdf
non accessibile
Descrizione: Executive summary
Dimensione
997.26 kB
Formato
Adobe PDF
|
997.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223104