Cardiovascular devices undergo rigorous testing and validation processes before entering the market to ensure efficiency and safety for the patients. These evaluations are traditionally conducted in vitro using hydraulic Mock Circulatory Loops (MCLs), which, though widely employed, have inherent limitations in versatility and might not faithfully replicate physiological conditions. In recent years, hybrid mock loops (which are a combination of mechanical and numerical MCLs, that operate concurrently and interact in real-time through a numerical-hydraulic interface) have emerged as the solution to this challenge, offering versatility and reliability. In light of that, our thesis work focuses on implementing new functionalities in an existing hybrid mock loop, in collaboration with the Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” (Laboratory of Biological Structure Mechanics, LaBS). The main improvement we made was the automated control of the backflow pump, essential for managing fluid direction between the aortic and left ventricular chambers. This enhancement ensures precise and reliable simulations even in cases where regurgitation may occur. This is crucial for testing cardiovascular devices under dynamic conditions. Additionally, significant refinements were made to the vacuum circuit. The previous vacuum pump failed to adequately generate negative pressure to replicate isovolumic relaxation, prompting us to optimize the circuit. Through calculations, we determined that upgrading the vacuum pump and adding a second vacuum chamber to the circuit improved the mock loop’s ability to simulate realistic hemodynamic waveforms. This optimization leads the way to obtaining more accurate assessments of cardiovascular device performance across a spectrum of physiological scenarios, including rest and simulated infarction. These enhancements were validated through two primary methodologies: firstly, experimental waveforms were compared to theoretical ones at varying heart rates, to ensure that our modified hybrid mock loop faithfully replicated complex cardiovascular dynamics; secondly, we integrated a Ventricular Assist Device (VAD) with the simulator to assess its interaction and performance under simulated pathological cardiac conditions. This integration further validated the versatility and reliability of our enhanced mock loop in testing and developing cardiovascular devices.
Prima di essere immessi sul mercato, i dispositivi cardiovascolari sono sottoposti a rigorosi processi di test e validazione per garantire efficienza e sicurezza per i pazienti. Queste valutazioni sono solitamente condotte in vitro utilizzando banchi prova cardiovascolari fisici che, sebbene ampiamente utilizzati, presentano limiti relativi alla loro versatilità. Negli ultimi anni, modelli ibridi (che sono una combinazione di banchi prova meccanici e numerici, che operano simultaneamente e interagiscono in tempo reale attraverso un’interfaccia numerico-idraulica) sono emersi come una soluzione a questa sfida, offrendo versatilità e affidabilità. Alla luce di ciò, il nostro lavoro di tesi si concentra sull'implementazione di nuove funzionalità in un banco prova ibrido esistente, presso il Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" (Artificial Organs Lab - Laboratorio di Meccanica delle Strutture Biologiche, LaBS). Il principale miglioramento apportato è stato lo sviluppo e l’implementazione del controllo automatizzato della pompa di backflow, essenziale per gestire i livelli di fluido nelle due camere presenti nel banco prova, che possono rappresentare in una configurazione aorta e ventricolo sinistro. Questo miglioramento garantisce simulazioni precise e affidabili anche in presenza di rigurgito. Ciò è cruciale per testare i dispositivi cardiovascolari in condizioni dinamiche. Inoltre, sono stati apportati miglioramenti significativi al circuito del vuoto. La precedente pompa di vuoto utilizzata nel simulatore non riusciva a generare una pressione negativa adeguata per replicare il rilassamento volumetrico del ventricolo, il che ci ha spinto a voler ottimizzare il circuito. Attraverso accurati calcoli, abbiamo determinato che l’inserimento di una nuova pompa di vuoto più performante e l’aggiunta di una seconda camera di vuoto al circuito migliorerebbero la capacità del modello di simulare onde emodinamiche realistiche. Questi miglioramenti aprono la strada a valutazioni più accurate delle prestazioni dei dispositivi cardiovascolari in un più ampio spettro di scenari fisiologici. Le modifiche da noi apportate sul simulatore ibrido sono state convalidate attraverso due metodologie di test: innanzitutto, le forme d'onda sperimentali sono state confrontate con quelle teoriche a diverse frequenze cardiache, per garantire che le complesse dinamiche cardiovascolari fossero replicate fedelmente; in secondo luogo, abbiamo integrato nel circuito un dispositivo di assistenza ventricolare (VAD) per valutare la sua interazione con il simulatore e la sua prestazione simulando condizioni cardiache patologiche. Questa integrazione ha ulteriormente convalidato la versatilità e l’affidabilità del banco prova nel testare dispositivi cardiovascolari.
Improving the performance of a hybrid mock circulatory loop: advanced pump control and vacuum system optimization
CAPPELLI, CECILIA;TUFANO, MARCO
2023/2024
Abstract
Cardiovascular devices undergo rigorous testing and validation processes before entering the market to ensure efficiency and safety for the patients. These evaluations are traditionally conducted in vitro using hydraulic Mock Circulatory Loops (MCLs), which, though widely employed, have inherent limitations in versatility and might not faithfully replicate physiological conditions. In recent years, hybrid mock loops (which are a combination of mechanical and numerical MCLs, that operate concurrently and interact in real-time through a numerical-hydraulic interface) have emerged as the solution to this challenge, offering versatility and reliability. In light of that, our thesis work focuses on implementing new functionalities in an existing hybrid mock loop, in collaboration with the Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” (Laboratory of Biological Structure Mechanics, LaBS). The main improvement we made was the automated control of the backflow pump, essential for managing fluid direction between the aortic and left ventricular chambers. This enhancement ensures precise and reliable simulations even in cases where regurgitation may occur. This is crucial for testing cardiovascular devices under dynamic conditions. Additionally, significant refinements were made to the vacuum circuit. The previous vacuum pump failed to adequately generate negative pressure to replicate isovolumic relaxation, prompting us to optimize the circuit. Through calculations, we determined that upgrading the vacuum pump and adding a second vacuum chamber to the circuit improved the mock loop’s ability to simulate realistic hemodynamic waveforms. This optimization leads the way to obtaining more accurate assessments of cardiovascular device performance across a spectrum of physiological scenarios, including rest and simulated infarction. These enhancements were validated through two primary methodologies: firstly, experimental waveforms were compared to theoretical ones at varying heart rates, to ensure that our modified hybrid mock loop faithfully replicated complex cardiovascular dynamics; secondly, we integrated a Ventricular Assist Device (VAD) with the simulator to assess its interaction and performance under simulated pathological cardiac conditions. This integration further validated the versatility and reliability of our enhanced mock loop in testing and developing cardiovascular devices.File | Dimensione | Formato | |
---|---|---|---|
2024_07Executive_Summary_Cappelli_Tufano.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
2024_07_Cappelli_Tufano.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
7.42 MB
Formato
Adobe PDF
|
7.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223119