The aviation industry needs to face the decarbonisation challenge by achieving net-zero carbon emissions by 2050 while maintaining continuous growth. While efficiency improvements should be sought, alternative fuels and propulsion technologies are necessary for significant progress, since aviation's environmental impact goes beyond greenhouse gas emissions. Sustainable aviation fuels (SAFs) are currently the most viable option, offering a smooth and safe transition with existing fleets and infrastructure. Alternative propulsion technologies (APTs), namely hydrogen and electric propulsion, are potentially more sustainable options but come with a complex set of requirements for their adoption. This suggests that the industry could prioritise SAF to the extent that it becomes locked-in, delaying the adoption of APTs and eventually preventing achieving its net-zero goal. This thesis investigates the interplay between SAFs and APTs and examines technical factors that might contribute to SAF lock-in. It employs a systematic literature review, followed by a targeted survey and interviews with key stakeholders across the industry. The research identified a gap in existing literature, which primarily focuses on each technology individually, neglecting their interactions and impact on each other. The need for a multi-technology approach is highlighted as there are potential opportunities for synergies between SAF and APTs. This study finds that the lack of infrastructure and upfront costs for novel aircraft to accommodate APTs are potential factors contributing to the lock-in of SAF. Conversely, initial investments in SAF are unlikely to influence APTs’ adoption. This study reveals a surprising level of uncertainty among the stakeholders regarding the interplay between SAFs and APTs. This lack of consensus emphasises the need for further research on the interactions and potential synergies between SAF and APTs. Understanding the interplay between the technologies can help unlock a future where both SAFs and APTs contribute to a more sustainable aviation industry.
L'industria dell'aviazione deve affrontare la sfida della decarbonizzazione raggiungendo zero emissioni nette di carbonio entro il 2050, ma mantenendo crescita continua. Lavorare sull'efficienza è un’opzione attuabile, ma per compiere progressi significativi sono necessari carburanti e tecnologie di propulsione alternativi. I carburanti sostenibili per l'aviazione (SAF) sono attualmente l'opzione più praticabile, in quanto offrono una transizione lineare e sicura con le flotte e le infrastrutture esistenti. Le tecnologie di propulsione alternative (APT), in particolare la propulsione a idrogeno ed elettrica, sono opzioni potenzialmente più sostenibili, ma la loro adozione comporta requisiti complessi. Ciò suggerisce che, dando priorità al SAF, l'industria potrebbe indurre un lock-in tecnologico, ritardando l'adozione delle APT e impedendo il raggiungimento dell’obiettivo di zero emissioni nette. Questa tesi indaga l'interazione tra SAF e APT ed esamina i fattori tecnici che potrebbero contribuire al lock-in del SAF tramite una revisione della letteratura, seguita da un questionario mirato e da interviste con importanti stakeholder del settore. La ricerca ha individuato una lacuna nella letteratura esistente, che si concentra principalmente su ogni singola tecnologia, trascurando le interazioni e l'impatto reciproco. È stata evidenziata la necessità di un approccio multi-tecnologico, in quanto esistono potenziali opportunità di sinergie tra SAF e APT. Lo studio rileva che la mancanza di infrastrutture e i costi iniziali per nuovi aeromobili in grado di accogliere le APT sono potenziali fattori che contribuiscono al lock-in del SAF. Al contrario, è improbabile che gli investimenti iniziali nel SAF influenzino l'adozione delle APT. Questo studio rivela un sorprendente livello di incertezza tra le parti interessate riguardo all'interazione tra SAF e APT, sottolineando la necessità di ulteriori ricerche sulle interazioni e sulle potenziali sinergie tra SAF e APT. Comprendere l'interazione tra le tecnologie può aiutare la transizione verso un’aviazione più sostenibile.
Sustainability transition of the aviation industry: Interplay of emerging aircraft technologies and possible lock-ins
Munzone, Matteo;PARAMONOVA, MARINA
2023/2024
Abstract
The aviation industry needs to face the decarbonisation challenge by achieving net-zero carbon emissions by 2050 while maintaining continuous growth. While efficiency improvements should be sought, alternative fuels and propulsion technologies are necessary for significant progress, since aviation's environmental impact goes beyond greenhouse gas emissions. Sustainable aviation fuels (SAFs) are currently the most viable option, offering a smooth and safe transition with existing fleets and infrastructure. Alternative propulsion technologies (APTs), namely hydrogen and electric propulsion, are potentially more sustainable options but come with a complex set of requirements for their adoption. This suggests that the industry could prioritise SAF to the extent that it becomes locked-in, delaying the adoption of APTs and eventually preventing achieving its net-zero goal. This thesis investigates the interplay between SAFs and APTs and examines technical factors that might contribute to SAF lock-in. It employs a systematic literature review, followed by a targeted survey and interviews with key stakeholders across the industry. The research identified a gap in existing literature, which primarily focuses on each technology individually, neglecting their interactions and impact on each other. The need for a multi-technology approach is highlighted as there are potential opportunities for synergies between SAF and APTs. This study finds that the lack of infrastructure and upfront costs for novel aircraft to accommodate APTs are potential factors contributing to the lock-in of SAF. Conversely, initial investments in SAF are unlikely to influence APTs’ adoption. This study reveals a surprising level of uncertainty among the stakeholders regarding the interplay between SAFs and APTs. This lack of consensus emphasises the need for further research on the interactions and potential synergies between SAF and APTs. Understanding the interplay between the technologies can help unlock a future where both SAFs and APTs contribute to a more sustainable aviation industry.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Munzone_Paramonova_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
6.61 MB
Formato
Adobe PDF
|
6.61 MB | Adobe PDF | Visualizza/Apri |
2024_07_Munzone_Paramonova_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223129