The liver, which performs over 500 vital functions for the human body, plays a fundamental role in drug metabolism. Consequently, in the preclinical stages of drug development (DDP), the liver model assumes a central importance. In this context, the Liver-on-Chip (LoC) emerges as an innovative solution, capable of overcoming the limitations of traditional in vitro models and providing an effective organ system for studying drug metabolism and their side effects. The objective of this thesis is to optimize a three-dimensional microfluidic liver model suitable for integration into a MultiOrgan platform, using HepG2 cells encapsulated within a gel as a simulation of primary hepatocytes. Given the importance of the extracellular matrix (ECM) in the cellular microenvironment, various types of gels were preliminarily evaluated to improve the viability of HepG2 cells within the chip, taking into account the challenges associated with three-dimensional culture. Once the optimal gel had been identified and its concentration optimized, attention was directed towards confirming the permeability of the gel to ensure adequate nutrient exchange between the medium and the cells. Subsequently, functional tests were conducted by injecting a hepatotoxic drug, Doxorubicin, in order to validate the platform in the context of drug testing. The effects of the drug on cell viability and albumin production were evaluated. In order to further refine the model, a co-culture condition with HUVEC cells, which are capable of supporting HepG2 cells, was implemented. Finally, given the liver's pivotal role in drug metabolism, which can induce toxicity in non-target organs, it is imperative to develop a three-dimensional Liver-on-Chip that can be integrated into a MultiOrgan platform. In light of these considerations, the model was connected to an existing three-dimensional heart chamber, thereby facilitating future analyses of drug cardiotoxicity.
Il fegato, con le sue oltre 500 funzioni vitali per il corpo umano, è un organo fondamentale per il metabolismo dei farmaci. Di conseguenza, nelle fasi precliniche dello sviluppo farmaceutico (DDP), il modello epatico assume un'importanza centrale. In questo ambito, i Liver-on-Chip (LoC) emergono come una soluzione innovativa, capace di superare le limitazioni dei modelli in vitro tradizionali e di fornire un sistema organico efficace per studiare il metabolismo dei farmaci e i loro effetti collaterali. Questo lavoro di tesi si propone di ottimizzare un modello microfluidico di fegato tridimensionale adatto ad un’integrazione in una piattaforma MultiOrgano, utilizzando le cellule HepG2 incapsulate all’interno di un gel come simulazione degli epatociti primari. Considerata l'importanza della matrice extracellulare (ECM) nel microambiente cellulare, sono stati preliminarmente valutati diversi tipi di gel al fine di migliorare la vitalità delle cellule HepG2 all'interno del chip, tenendo conto delle sfide associate alla coltura tridimensionale. Dopo aver selezionato il gel più idoneo e ottimizzato la sua concentrazione, si è focalizzata l’attenzione sulla permeabilità del gel per poter confermare un adeguato scambio di nutrienti tra il mezzo e le cellule. Sono stati successivamente condotti test funzionali mediante l'iniezione di un farmaco epatotossico, la Doxorubicina, per validare la piattaforma nel contesto del drug testing, valutando gli effetti del farmaco sulla vitalità cellulare e sulla produzione di albumina. Per perfezionare ulteriormente il modello, è stata implementata una condizione di co-coltura con cellule HUVEC, capaci di supportare le cellule HepG2. Infine, considerando la rilevanza del fegato come organo primario nel metabolismo dei farmaci, processo che può indurre tossicità su organi non bersaglio, è fondamentale sviluppare un Liver-on-Chip tridimensionale idoneo per essere incluso in una piattaforma MultiOrgano. In quest’ottica, il modello è stato connesso ad una camera tridimensionale già esistente del cuore, consentendo analisi future della cardiotossicità dei farmaci.
Optimization of a 3D Liver-on-Chip model suitable for integration in a MultiOrgan-on-Chip platform
Zampieri, Alice
2023/2024
Abstract
The liver, which performs over 500 vital functions for the human body, plays a fundamental role in drug metabolism. Consequently, in the preclinical stages of drug development (DDP), the liver model assumes a central importance. In this context, the Liver-on-Chip (LoC) emerges as an innovative solution, capable of overcoming the limitations of traditional in vitro models and providing an effective organ system for studying drug metabolism and their side effects. The objective of this thesis is to optimize a three-dimensional microfluidic liver model suitable for integration into a MultiOrgan platform, using HepG2 cells encapsulated within a gel as a simulation of primary hepatocytes. Given the importance of the extracellular matrix (ECM) in the cellular microenvironment, various types of gels were preliminarily evaluated to improve the viability of HepG2 cells within the chip, taking into account the challenges associated with three-dimensional culture. Once the optimal gel had been identified and its concentration optimized, attention was directed towards confirming the permeability of the gel to ensure adequate nutrient exchange between the medium and the cells. Subsequently, functional tests were conducted by injecting a hepatotoxic drug, Doxorubicin, in order to validate the platform in the context of drug testing. The effects of the drug on cell viability and albumin production were evaluated. In order to further refine the model, a co-culture condition with HUVEC cells, which are capable of supporting HepG2 cells, was implemented. Finally, given the liver's pivotal role in drug metabolism, which can induce toxicity in non-target organs, it is imperative to develop a three-dimensional Liver-on-Chip that can be integrated into a MultiOrgan platform. In light of these considerations, the model was connected to an existing three-dimensional heart chamber, thereby facilitating future analyses of drug cardiotoxicity.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Zampieri_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.23 MB
Formato
Adobe PDF
|
7.23 MB | Adobe PDF | Visualizza/Apri |
2024_07_Zampieri_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223169