This thesis investigates the novel damping concept, known as inter-2-blade, for helicopter rotor dynamics through detailed modeling and Multi-Body (MB) simulations, utilizing the MBDyn software. The core objective is to explore the practical implications and effectiveness of this innovative mechanism to provide lead-lag damping, which has only been studied with simplified models before. The study first verifies the proposed MB models against analytical results from Matlab, focusing on Ground Resonance (GR) stability. A comprehensive formulation of the Deutsch Criterion for sizing mechanical dampers is developed, incorporating additional geometrical factors introduced by new damping arrangements. Additionally, this analysis extends previous work by including the effects of aerodynamics and out-of-plane blade motions, emphasizing potential kinematic couplings and their effects on GR stability. Subsequent chapters delve into the introduced loads in the dampers and hub during forward flight, comparing ideal and realistic scenarios to assess the impact of flapping and pitching motions on damper effectiveness. The implementation of a non-linear damper constitutive law further refines the model, providing a more accurate assessment of loads and dynamics under realistic conditions. Key findings reveal that the inter-2-blade damping mechanism offers significant stability improvements and reduced damper and hub loads compared to traditional configurations. However, the results suggest that the influence of kinematic couplings, particularly those involving pitch and flap dynamics, is crucial to overall dynamics, underscoring the need for careful consideration in practical applications. This work lays the groundwork for future studies aimed at validating the inter-2-blade concept under fully realistic conditions, proposing the use of advanced numerical methods and more sophisticated kinematic models.
Questa tesi studia un concetto innovativo di smorzamento, detto inter-2-blade, per la dinamica dei rotori di elicottero mediante una modellazione dettagliata e simulazioni Multi-Body (MB), utilizzando il solutore MBDyn. L'obiettivo principale è esplorare le implicazioni pratiche e l'efficacia di questo modo innovativo di introdurre lo smorzamento, finora solo proposto con modelli semplificati. Lo studio inizia con la verifica dei modelli MB, confrontati con risultati analitici ottenuti con Matlab, concentrandosi sulla stabilità del fenomeno della risonanza al suolo (ground resonance, GR). Viene sviluppata una formulazione generalizzata del criterio di Deutsch per il dimensionamento dello smorzamento, che considera fattori geometrici aggiuntivi introdotti dai nuovi schemi di introduzione dello smorzamento. L'analisi viene estesa per includere gli effetti dell'aerodinamica e dei movimenti fuori piano delle pale, enfatizzando i possibili accoppiamenti cinematici che potrebbero influenzare la stabilità GR. I capitoli successivi approfondiscono la dinamica dei carichi negli smorzatori e sul mozzo durante il volo avanzato, confrontando scenari ideali e realistici per valutare l'impatto dei movimenti di flappeggio e passo sull'efficacia degli smorzatori. L'implementazione di una legge costitutiva non lineare per lo smorzatore affina ulteriormente il modello, migliorando la valutazione dei carichi e della dinamica in condizioni realistiche. I risultati principali rivelano che il meccanismo di smorzamento inter-2-blade offre significativi miglioramenti in termini di stabilità e riduzione dei carichi sugli smorzatori e sul mozzo rispetto alle configurazioni tradizionali. Tuttavia, l'influenza degli accoppiamenti cinematici, in particolare quelli che coinvolgono le dinamiche di passo e flappeggio, sottolinea la necessità di una attenta considerazione nelle applicazioni pratiche. Questo lavoro getta le basi per studi futuri mirati a validare il concetto di smorzamento inter-2-blade in condizioni completamente realistiche, proponendo l'uso di metodi numerici avanzati e modelli cinematici più sofisticati.
A Comparative Study of the Impact of Innovative Lead-Lag Damping Configurations on Helicopter Rotor Stability and Loads
ÁLVARO SANZ, ALEJANDRO
2023/2024
Abstract
This thesis investigates the novel damping concept, known as inter-2-blade, for helicopter rotor dynamics through detailed modeling and Multi-Body (MB) simulations, utilizing the MBDyn software. The core objective is to explore the practical implications and effectiveness of this innovative mechanism to provide lead-lag damping, which has only been studied with simplified models before. The study first verifies the proposed MB models against analytical results from Matlab, focusing on Ground Resonance (GR) stability. A comprehensive formulation of the Deutsch Criterion for sizing mechanical dampers is developed, incorporating additional geometrical factors introduced by new damping arrangements. Additionally, this analysis extends previous work by including the effects of aerodynamics and out-of-plane blade motions, emphasizing potential kinematic couplings and their effects on GR stability. Subsequent chapters delve into the introduced loads in the dampers and hub during forward flight, comparing ideal and realistic scenarios to assess the impact of flapping and pitching motions on damper effectiveness. The implementation of a non-linear damper constitutive law further refines the model, providing a more accurate assessment of loads and dynamics under realistic conditions. Key findings reveal that the inter-2-blade damping mechanism offers significant stability improvements and reduced damper and hub loads compared to traditional configurations. However, the results suggest that the influence of kinematic couplings, particularly those involving pitch and flap dynamics, is crucial to overall dynamics, underscoring the need for careful consideration in practical applications. This work lays the groundwork for future studies aimed at validating the inter-2-blade concept under fully realistic conditions, proposing the use of advanced numerical methods and more sophisticated kinematic models.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Alvaro_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
15.3 MB
Formato
Adobe PDF
|
15.3 MB | Adobe PDF | Visualizza/Apri |
2024_07_Alvaro_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
728.94 kB
Formato
Adobe PDF
|
728.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223341