This thesis explores the fatigue characteristics of 17-4 PH stainless steel specimens fabricated via material extrusion additive manufacturing. Using the Markforged Metal X printer, specimens were made with a polymer/wax/metal filament and unique infill patterns. Post-printing, they underwent debinding and sintering processes. Fatigue tests were conducted at room temperature at 20 Hz with a loading ratio of R = 0.1. Surface roughness was measured using an ALICONA Infinite Focus Microscope, and porosity was analyzed via optical microscopy and digital image analysis. Microhardness was assessed with a Vickers hardness test, and fractographic analysis was performed using a confocal microscope. Contrary to initial expectations of thickness independence, the study found thickness significantly influenced fatigue behavior due to stress distribution, dimensional irregularity, and surface roughness. Thicker specimens showed better high-cycle fatigue (HCF) life from more even stress distribution and reduced stress concentrations. Thinner specimens exhibited superior low-cycle fatigue (LCF) performance due to greater plastic deformation capacity. Surface roughness affected crack initiation more on thinner specimens, while thicker ones saw initiation shift to the bottom surface due to printing process impurities. Porosity analysis showed minimal variation except for a potential anomaly in the 3mm specimen. Consistent microhardness across all thicknesses suggested fatigue differences stemmed mainly from geometric and stress-related factors. Fractographic analysis supported these findings, revealing a transition from top to bottom surface crack initiation with increasing thickness, explaining thicker specimens’ better HCF life. The study concludes that specimen thickness significantly influences additively manufactured 17-4 PH stainless steel fatigue behavior, underscoring the need to consider geometric factors, stress distribution, and surface quality in component design for fatigue-sensitive applications. Future research could explore build orientation and post-processing effects on fatigue performance and develop predictive models incorporating geometric and microstructural features to forecast fatigue life accurately.
Questa tesi esplora le caratteristiche di fatica dei campioni in acciaio inossidabile 17-4 PH fabbricati tramite stampa additiva a estrusione di materiale. Utilizzando la stampante Markforged Metal X, i campioni sono stati realizzati con un filamento polimerico/cera/metallico e pattern di riempimento unici. Dopo la stampa, i campioni sono stati deparaffinati e sinterizzati. I test di fatica sono stati condotti a temperatura ambiente a 20 Hz con un rapporto di carico R = 0.1. La ruvidità superficiale è stata misurata con il microscopio ALICONA Infinite Focus, e la porosità è stata analizzata tramite microscopia ottica e analisi digitale delle immagini. La microdurezza è stata valutata con il test di durezza Vickers, e l’analisi frattografica è stata eseguita con un microscopio confocale. Lo studio ha rivelato che lo spessore dei campioni influenza significativamente il comportamento alla fatica, influenzato dalla distribuzione dello stress, dall’irregolarità dimensionale e dalla ruvidità superficiale. I campioni più spessi hanno mostrato una migliore resistenza alla fatica ad alta ciclicità grazie a una distribuzione più uniforme dello stress e a concentrazioni ridotte. Al contrario, i campioni più sottili hanno presentato prestazioni superiori nella fatica a bassa ciclicità grazie a una maggiore capacità di deformazione plastica. La ruvidità superficiale ha giocato un ruolo critico nell’innesco delle crepe, con maggiore suscettibilità nei campioni più sottili. L’analisi della porosità ha evidenziato variazioni minime, tranne che in un possibile caso anomalo. La microdurezza costante tra gli spessori ha suggerito che le differenze nella fatica derivassero principalmente da fattori geometrici e legati allo stress. L’analisi frattografica ha confermato queste conclusioni, mostrando una transizione nell’innesco delle crepe dalla superficie superiore a quella inferiore con l’aumentare dello spessore, spiegando la migliore resistenza alla fatica ad alta ciclicità nei campioni più spessi. Lo studio sottolinea l’importanza di considerare fattori geometrici, distribuzione dello stress e qualità superficiale nel progettare componenti per applicazioni sensibili alla fatica.
Effect of build thickness on fatigue behavior of 17-4 PH stainless steel fabricated by material extrusion additive manufacturing
HABIBIYAN, ARMIN
2023/2024
Abstract
This thesis explores the fatigue characteristics of 17-4 PH stainless steel specimens fabricated via material extrusion additive manufacturing. Using the Markforged Metal X printer, specimens were made with a polymer/wax/metal filament and unique infill patterns. Post-printing, they underwent debinding and sintering processes. Fatigue tests were conducted at room temperature at 20 Hz with a loading ratio of R = 0.1. Surface roughness was measured using an ALICONA Infinite Focus Microscope, and porosity was analyzed via optical microscopy and digital image analysis. Microhardness was assessed with a Vickers hardness test, and fractographic analysis was performed using a confocal microscope. Contrary to initial expectations of thickness independence, the study found thickness significantly influenced fatigue behavior due to stress distribution, dimensional irregularity, and surface roughness. Thicker specimens showed better high-cycle fatigue (HCF) life from more even stress distribution and reduced stress concentrations. Thinner specimens exhibited superior low-cycle fatigue (LCF) performance due to greater plastic deformation capacity. Surface roughness affected crack initiation more on thinner specimens, while thicker ones saw initiation shift to the bottom surface due to printing process impurities. Porosity analysis showed minimal variation except for a potential anomaly in the 3mm specimen. Consistent microhardness across all thicknesses suggested fatigue differences stemmed mainly from geometric and stress-related factors. Fractographic analysis supported these findings, revealing a transition from top to bottom surface crack initiation with increasing thickness, explaining thicker specimens’ better HCF life. The study concludes that specimen thickness significantly influences additively manufactured 17-4 PH stainless steel fatigue behavior, underscoring the need to consider geometric factors, stress distribution, and surface quality in component design for fatigue-sensitive applications. Future research could explore build orientation and post-processing effects on fatigue performance and develop predictive models incorporating geometric and microstructural features to forecast fatigue life accurately.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
125.75 MB
Formato
Adobe PDF
|
125.75 MB | Adobe PDF | Visualizza/Apri |
Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
68.87 MB
Formato
Adobe PDF
|
68.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223352