Understanding the physics of magnetic reconnection is of utmost importance for applications ranging from fusion to astrophysics. This phenomenon is crucial for describing the dynamics of multiple events in the solar atmosphere, such as violent solar eruptions, X-ray jets, solar flares and so on. In this thesis, we have studied the effects of anisotropic conductivity (isotropic, Pederson, Hall) on the dynamics of reconnection in the solar chromosphere and adjacent transition region within a multifluid MHD regime. This regime included two fluids, the former of which was composed of ions and electrons, while the latter of neutrals. The conductivity values were obtained from the VAL-C model. Here, we have considered four altitudes, starting with weak ionization of 0.8% at 10,700K to 88% ionization at 18,500K, in which the reconnection rates and current sheet evolutions under single anomalous resistive conditions versus anisotropic resistive conditions were compared. It was found that there were significant variations in the reconnection rates and the current sheet thickness in both cases. Reconnection rates with anisotropic conductivities were orders of magnitude lower than those computed with the single resistive model. This anisotropy in the conductivity caused the sheets to thin out more slowly, resulting in a delay of the onset of tearing mode instability in anisotropic resistive current sheets. Additionally, a variation in energy dissipation rates between single and anisotropic resistive current sheets is observed. With these observations, it can be concluded that the anisotropic nature of the conductivity significantly influences the dynamics and evolution of the magnetic reconnection. This anisotropic nature is more physical than single resistive approximations.

Comprendere la fisica della riconnessione magnetica è di fondamentale importanza per applicazioni che vanno dalla fusione all'astrofisica. Questo fenomeno è cruciale per descrivere la dinamica di molteplici eventi nell'atmosfera solare, come violente eruzioni solari, getti di raggi X, brillamenti solari e così via. In questa tesi, abbiamo studiato gli effetti della conducibilità anisotropa (isotropica, Pederson, Hall) sulla dinamica della riconnessione nella cromosfera solare e nella regione di transizione adiacente all'interno di un regime MHD multifluido. Questo regime includeva due fluidi, il primo dei quali era composto da ioni ed elettroni, mentre il secondo da neutrali. I valori della conducibilità sono stati ottenuti dal modello VAL-C. Qui, abbiamo considerato quattro altitudini, partendo da una debole ionizzazione dello 0,8% a 10,700K fino all'88% di ionizzazione a 18,500K, in cui i tassi di riconnessione e le evoluzioni del foglio di corrente sotto condizioni di resistenza anomala singola rispetto a quelle anisotrope sono stati confrontati. Si è scoperto che vi erano variazioni significative nei tassi di riconnessione e nello spessore del foglio di corrente in entrambi i casi. I tassi di riconnessione con conducibilità anisotrope erano ordini di grandezza inferiori a quelli calcolati con il modello resistivo singolo. Questa anisotropia nella conducibilità ha causato un assottigliamento più lento dei fogli, risultando in un ritardo nell'inizio dell'instabilità della modalità tearing nei fogli di corrente resistivi anisotropi. Inoltre, è stata osservata una variazione nei tassi di dissipazione dell'energia tra i fogli di corrente resistivi singoli e anisotropi. Con queste osservazioni, si può concludere che la natura anisotropa della conducibilità influenza significativamente la dinamica e l'evoluzione della riconnessione magnetica. Questa natura anisotropa è più fisica rispetto alle approssimazioni resistive singole.

On The Effects of Anisotropic Conductivities On Magnetic Reconnection in Solar Chromosphere

Allamraju, Venu Srinivas Satya Pavan Revanth
2023/2024

Abstract

Understanding the physics of magnetic reconnection is of utmost importance for applications ranging from fusion to astrophysics. This phenomenon is crucial for describing the dynamics of multiple events in the solar atmosphere, such as violent solar eruptions, X-ray jets, solar flares and so on. In this thesis, we have studied the effects of anisotropic conductivity (isotropic, Pederson, Hall) on the dynamics of reconnection in the solar chromosphere and adjacent transition region within a multifluid MHD regime. This regime included two fluids, the former of which was composed of ions and electrons, while the latter of neutrals. The conductivity values were obtained from the VAL-C model. Here, we have considered four altitudes, starting with weak ionization of 0.8% at 10,700K to 88% ionization at 18,500K, in which the reconnection rates and current sheet evolutions under single anomalous resistive conditions versus anisotropic resistive conditions were compared. It was found that there were significant variations in the reconnection rates and the current sheet thickness in both cases. Reconnection rates with anisotropic conductivities were orders of magnitude lower than those computed with the single resistive model. This anisotropy in the conductivity caused the sheets to thin out more slowly, resulting in a delay of the onset of tearing mode instability in anisotropic resistive current sheets. Additionally, a variation in energy dissipation rates between single and anisotropic resistive current sheets is observed. With these observations, it can be concluded that the anisotropic nature of the conductivity significantly influences the dynamics and evolution of the magnetic reconnection. This anisotropic nature is more physical than single resistive approximations.
BRCHNELOVA, MICHAELA
LANI, ANDREA
POEDTS, STEFAAN
ING - Scuola di Ingegneria Industriale e dell'Informazione
16-lug-2024
2023/2024
Comprendere la fisica della riconnessione magnetica è di fondamentale importanza per applicazioni che vanno dalla fusione all'astrofisica. Questo fenomeno è cruciale per descrivere la dinamica di molteplici eventi nell'atmosfera solare, come violente eruzioni solari, getti di raggi X, brillamenti solari e così via. In questa tesi, abbiamo studiato gli effetti della conducibilità anisotropa (isotropica, Pederson, Hall) sulla dinamica della riconnessione nella cromosfera solare e nella regione di transizione adiacente all'interno di un regime MHD multifluido. Questo regime includeva due fluidi, il primo dei quali era composto da ioni ed elettroni, mentre il secondo da neutrali. I valori della conducibilità sono stati ottenuti dal modello VAL-C. Qui, abbiamo considerato quattro altitudini, partendo da una debole ionizzazione dello 0,8% a 10,700K fino all'88% di ionizzazione a 18,500K, in cui i tassi di riconnessione e le evoluzioni del foglio di corrente sotto condizioni di resistenza anomala singola rispetto a quelle anisotrope sono stati confrontati. Si è scoperto che vi erano variazioni significative nei tassi di riconnessione e nello spessore del foglio di corrente in entrambi i casi. I tassi di riconnessione con conducibilità anisotrope erano ordini di grandezza inferiori a quelli calcolati con il modello resistivo singolo. Questa anisotropia nella conducibilità ha causato un assottigliamento più lento dei fogli, risultando in un ritardo nell'inizio dell'instabilità della modalità tearing nei fogli di corrente resistivi anisotropi. Inoltre, è stata osservata una variazione nei tassi di dissipazione dell'energia tra i fogli di corrente resistivi singoli e anisotropi. Con queste osservazioni, si può concludere che la natura anisotropa della conducibilità influenza significativamente la dinamica e l'evoluzione della riconnessione magnetica. Questa natura anisotropa è più fisica rispetto alle approssimazioni resistive singole.
File allegati
File Dimensione Formato  
2024_07_Venu_Revanth_Allamraju_Thesis.pdf

accessibile in internet per tutti

Descrizione: Thesis
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri
2024_07_Venu_Revanth_Allamraju_Executive_Summary.pdf

solo utenti autorizzati a partire dal 29/06/2025

Descrizione: Executive Summary
Dimensione 614.04 kB
Formato Adobe PDF
614.04 kB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/223387