Over recent years we have witnessed a significant increase of the use of biomaterials for tissue engineering and regenerative medicine. Biomaterials, as foreign bodies, have the capability to cause the Foreign Body Reaction, an adverse immune reaction, that hampers the good luck of the medical device. The lack of the detailed understanding of the interaction between biomaterials and the immune system represents one of the major barriers to developing effective tissue engineering approaches. One of the most intriguing protagonists to be considered for the modulation of the immune system response are the macrophages, relevant in guiding tissue development and physiological healing. Dysfunction or imbalance in macrophage phenotypes results in lack healing of the injured tissue. The perspective of using laser light to study macrophage polarization in a non-invasive and non-destructive way is extremely appealing. This chance is offered by the possibility to use a home-built Raman and Brillouin spectroscopy microscope, devoted to the recollection of biochemical features and biomechanical properties characterizing the cellular sample. These label-free approaches reveal themselves to be able to overcome limitations regarding the well-known imaging methods, such as fluorescence microscopy and atomic force microscopy. The results show Raman microspectroscopy capable to detect biochemical differences of proteins, lipids and nucleic acids, among macrophages phenotypes. In addition, it identifies different cell lines (macrophages Vs fibroblasts), laying the foundation for performing label-free high-resolution microscopy of tissues in vivo, replacing histology analysis. Brillouin microspectroscopy results illustrate significant differences of cellular stiffness in the different macrophage phenotypes. The enrichment of mechanotransduction, involved in the macrophage polarization, and a real-time monitoring of the integration process of the medical device inside the body offers the possibility to control the modulation of the immune system, aiming to improve tissue regeneration, with the desire, in future, to elaborate methods that permit to guide macrophages through the temporal series of phenotypes of physiological healing.
Nel corso degli ultimi anni si è assistito a un significativo incremento nell’utilizzo di biomateriali nell’ambito dell’ingegneria dei tessuti e della medicina rigenerativa. I biomateriali, essendo riconosciuti come componenti non-self dal nostro organismo, sono responsabili della Reazione al Corpo Estraneo (FBR), un’avversa reazione immunitaria, che ostacola il funzionamento del dispositivo medico. La scarsa conoscenza dettagliata dell’interazione fra i biomateriali e il sistema immunitario rappresenta una delle più grandi barriere nello sviluppo di efficaci approcci nell’ambito dell’ingegneria tissutale. I maggiori protagonisti coinvolti nella modulazione della risposta immunitaria sono i macrofagi, responsabili dei processi fisiologici di crescita e di guarigione del tessuto. Alterazioni e squilibri nei fenotipi dei macrofagi conducono a una mancata guarigione del tessuto ferito. La possibilità di impiegare una sorgente di luce laser per studiare la polarizzazione dei macrofagi attraverso metodi non invasivi e non distruttivi è promettente e questa opportunità viene offerta dalla possibilità di utilizzo di un microscopio Raman-Brillouin sviluppato ad hoc, che consente la raccolta di informazioni riguardo le caratteristiche biochimiche e le proprietà biomeccaniche del campione cellulare. Inoltre, tali approcci label-free si rivelano in grado di superare le limitazioni caratterizzanti metodi di imaging ormai consolidati, come la microscopia a fluorescenza e la microscopia a forza atomica. I risultati mostrano che la microspettroscopia Raman individua differenze biochimiche in termini di proteine, lipidi e acidi nucleici fra i fenotipi dei macrofagi. Inoltre, identifica linee cellulari differenti (macrofagi Vs fibroblasti), ponendo le basi per studi mediante microscopia label-free a alta risoluzione in vivo, in sostituzione alle metodologie istologiche. La spettroscopia Brillouin restituisce differenze significative in termini di rigidezza cellulare fra i fenotipi dei macrofagi. L’opportunità di monitorare real-time il processo di integrazione del dispositivo medico all’interno del corpo e l’opportunità di approfondire il tema riguardante la meccanotrasduzione, coinvolta nel processo di polarizzazione del macrofago, consentono di comprendere come controllare la risposta immunitaria, stimolando la rigenerazione del tessuto danneggiato, con il desiderio, in futuro, di guidare i macrofagi stessi durante il processo di guarigione tissutale.
Biochemical and mechanical characterization of macrophage polarization by label-free Raman and Brillouin microspectroscopy
Gavazzoni, Benedetta
2023/2024
Abstract
Over recent years we have witnessed a significant increase of the use of biomaterials for tissue engineering and regenerative medicine. Biomaterials, as foreign bodies, have the capability to cause the Foreign Body Reaction, an adverse immune reaction, that hampers the good luck of the medical device. The lack of the detailed understanding of the interaction between biomaterials and the immune system represents one of the major barriers to developing effective tissue engineering approaches. One of the most intriguing protagonists to be considered for the modulation of the immune system response are the macrophages, relevant in guiding tissue development and physiological healing. Dysfunction or imbalance in macrophage phenotypes results in lack healing of the injured tissue. The perspective of using laser light to study macrophage polarization in a non-invasive and non-destructive way is extremely appealing. This chance is offered by the possibility to use a home-built Raman and Brillouin spectroscopy microscope, devoted to the recollection of biochemical features and biomechanical properties characterizing the cellular sample. These label-free approaches reveal themselves to be able to overcome limitations regarding the well-known imaging methods, such as fluorescence microscopy and atomic force microscopy. The results show Raman microspectroscopy capable to detect biochemical differences of proteins, lipids and nucleic acids, among macrophages phenotypes. In addition, it identifies different cell lines (macrophages Vs fibroblasts), laying the foundation for performing label-free high-resolution microscopy of tissues in vivo, replacing histology analysis. Brillouin microspectroscopy results illustrate significant differences of cellular stiffness in the different macrophage phenotypes. The enrichment of mechanotransduction, involved in the macrophage polarization, and a real-time monitoring of the integration process of the medical device inside the body offers the possibility to control the modulation of the immune system, aiming to improve tissue regeneration, with the desire, in future, to elaborate methods that permit to guide macrophages through the temporal series of phenotypes of physiological healing.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Gavazzoni_Tesi.pdf
accessibile in internet per tutti
Descrizione: Thesis project-"Biochemical and mechanical characterization of macrophage polarization by label-free Raman and Brillouin microspectroscopy"
Dimensione
26.67 MB
Formato
Adobe PDF
|
26.67 MB | Adobe PDF | Visualizza/Apri |
2024_07_Gavazzoni_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive summary-Biochemical and mechanical characterization of macrophage polarization by label-free Raman and Brillouin microspectroscopy
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223578