Coronary artery disease (CAD) remains a leading global cause of mortality, necessitating effective prevention strategies. Current risk assessment methods rely on clinical evaluations and non-invasive techniques but show limited diagnostic accuracy. This study integrates hemodynamic, morphological, and radiomic analyses using coronary computed tomography angiography (CCTA) to comprehensively stratify CAD risk. Ten patients with CAD-related symptoms underwent CCTA, and their clinical and imaging data were analyzed. Computational fluid dynamics (CFD) simulations assess coronary lesion significance, comparing fractional flow reserve (FFR) values from steady-state and transient simulations to invasive measurements. Results indicate relative errors up to 8%, with higher discrepancies near the "grey-zone" (0.75-0.80). Hemodynamic analysis indicates increased trans-lesional FFR and mean wall shear stress (WSS) with severe stenosis (greater than 50%), supporting CFD as a reliable, non-invasive CAD assessment tool. The study also explores the fat attenuation index (FAI) of perivascular adipose tissue as an inflammation biomarker, finding significant lesion-specific FAI correlations with atherosclerosis indicators and plaque vulnerability. Elevated FAI correlates with high stenosis severity, low minimal lumen area, increased WSS, reduced FFR, and increased trans-lesional FFR, highlighting functional impairment. In conclusion, integrating FAI into CAD assessment enhances risk stratification, highlighting the importance of lesion-specific analysis and the interplay of anatomical, hemodynamic, and radiomic factors in understanding coronary artery disease.
Le patologie coronariche sono tra le principali cause di mortalità a livello globale, per questo richiedono strategie di prevenzione efficaci. Gli attuali metodi di stratificazione del rischio si basano su valutazioni cliniche e tecniche non invasive, ma hanno un’accuratezza diagnostica limitata. Questo studio integra analisi emodinamiche, morfologiche e radiomiche a partire da immagini di tomografia computerizzata (TAC) coronarica per stratificare il rischio di coronaropatia in modo completo. Dieci pazienti con sintomi correlati a patologie coronariche sono stati sottoposti a TAC e sono stati analizzati i loro dati clinici e di imaging. Le simulazioni di fluidodinamica computazionale (CFD) valutano la significatività delle lesioni coronariche, confrontando i valori della riserva di flusso frazionale (FFR) ottenuti da simulazioni in stato stazionario e transiente con le misurazioni invasive. I risultati mostrano errori relativi fino all’8%, con errori maggiori principalmente per valori di FFR vicini alla "zona grigia" (0,75-0,80). L’analisi emodinamica indica un aumento dell’FFR trans-lesionale e dello sforzo di taglio medio in presenza di stenosi gravi (maggiori del 50%), supportando i modelli CFD come strumenti affidabili e non invasivi di valutazione delle coronaropatie. Lo studio ha anche analizzato l’indice di attenuazione del grasso (FAI) del tessuto adiposo perivascolare, utilizzato come biomarcatore dell’infiammazione, trovando correlazioni significative tra FAI per lesione e indicatori di aterosclerosi e vulnerabilità della placca. Un FAI elevato è correlato a un elevato grado di stenosi, a una bassa area minima luminale, a un aumento dello sforzo di taglio, a una riduzione dell’FFR e a un aumento della FFR trans-lesionale, evidenziando una compromissione funzionale. In conclusione, l’integrazione del FAI nella valutazione delle coronaropatie migliora la stratificazione del rischio, enfatizzando l’importanza dell’analisi per lesione dei vari fattori di rischio.
Comprehensive assessment of coronary artery disease using CT images: hemodynamic, morphological, and radiomic analysis of coronary lesions
Pillitteri, Marta
2023/2024
Abstract
Coronary artery disease (CAD) remains a leading global cause of mortality, necessitating effective prevention strategies. Current risk assessment methods rely on clinical evaluations and non-invasive techniques but show limited diagnostic accuracy. This study integrates hemodynamic, morphological, and radiomic analyses using coronary computed tomography angiography (CCTA) to comprehensively stratify CAD risk. Ten patients with CAD-related symptoms underwent CCTA, and their clinical and imaging data were analyzed. Computational fluid dynamics (CFD) simulations assess coronary lesion significance, comparing fractional flow reserve (FFR) values from steady-state and transient simulations to invasive measurements. Results indicate relative errors up to 8%, with higher discrepancies near the "grey-zone" (0.75-0.80). Hemodynamic analysis indicates increased trans-lesional FFR and mean wall shear stress (WSS) with severe stenosis (greater than 50%), supporting CFD as a reliable, non-invasive CAD assessment tool. The study also explores the fat attenuation index (FAI) of perivascular adipose tissue as an inflammation biomarker, finding significant lesion-specific FAI correlations with atherosclerosis indicators and plaque vulnerability. Elevated FAI correlates with high stenosis severity, low minimal lumen area, increased WSS, reduced FFR, and increased trans-lesional FFR, highlighting functional impairment. In conclusion, integrating FAI into CAD assessment enhances risk stratification, highlighting the importance of lesion-specific analysis and the interplay of anatomical, hemodynamic, and radiomic factors in understanding coronary artery disease.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Pillitteri_Tesi.pdf
non accessibile
Descrizione: Thesis
Dimensione
12.73 MB
Formato
Adobe PDF
|
12.73 MB | Adobe PDF | Visualizza/Apri |
2024_07_Pillitteri_ExecutiveSummary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223631